- 2021-06-01 发布 |
- 37.5 KB |
- 2页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2019七年级数学下册 第8章 幂的运算 8同底数幂的乘法
课题:8.1同底数幂的乘法 教学目标: 教学时间: 1. 能引导学生探索、理解、掌握同底数幂的运算性质,并会用符号表示,知道幂的意义是推导同底数幂的运算性质的依据; 2.会正确地运用同底数幂乘法的运算性质进行运算; 3.经历探索同底数幂乘法运算性质的过程,从中感受从具体到抽象、从特殊到一般的思想方法,在发展推理能力和有条理的表达能力的同时,体会学习数学的兴趣,培养学习数学的信心. 教学重点:同底数幂乘法的运算法则及其应用. 教学难点:同底数幂乘法的运算法则的灵活应用. 教学过程: 一.【情景创设】 重温“嫦娥二号”升天这一伟大时刻;观看航天人幕后工作画面.教师简介“嫦娥二号”升天过程中计算机的作用. 问题:一种电子计算机每秒可进行1014次运算,它工作103秒可进行多少次运算? 指导交流:引导学生在讨论与交流的基础上得出结果.指导学生观察上面算式中乘法底数,指数特点,引出课题:“同底数幂的乘法”. 二.【问题探究】 问题1.根据乘方的意义填空,看看计算结果有什么规律: (1)25×22= = ; (2)a3·a = = ; (3)5m·5n= = (m、n为正整数). ①启发、点拨学生发现同底数幂的乘法运算方法,观察运算过程中的底数、指数如何变化. ②猜想:对于任意底数a与任意正整数m、n, am · an=?并说明理由(板书过程). ③归纳并板书同底数幂的乘法法则. 注意:对这个法则要注重理解“同底、相乘、不变、相加”这八个字(特别提醒:a的指数是1,计算时不要遗漏). 问题2.例1 计算,结果用幂的形式表示. (1) a·a6 ; (2) (-2)3×(-2)2 ; (3) –am·a2m ; (4) 25×23×24 . 2 在学生充分思考、分析的基础上板书例1中(1)小题,其余学生独立完成,规范方法,步骤书写.通过观察比较、分析得出:am·an·ap=am+n+p(m、n、p都是正整数). 练一练: 1.口答:(1)()2×()4= (2)(-2)10×(-2)13= (3)-bn·b2n—1= (4)x5·x4·x= 2.下面的计算是否正确?如有错误,请改正. (1)x3·x3=2x6 ( ); (2)x4·x2=x8 ( ); (3)a2+a2=a4 ( ); (4)x·x3=x3 ( ). 3.填空:(1)a7a( )=a12; (2)ana( )=a3n; (3)3×27×35 =3x,则x= . 问题3.例2 计算,结果用幂的形式表示. (1)(2y+1)2·(2y+1)5; (2)(p-q)5·(q-p)2; (3)a4·a6+a5·a5. 练一练::计算.(1)(x-y)·(y-x)2·(x-y)5;(2)an·an+1+a2n·a (n是正整数). 三.【变式拓展】 问题4. “嫦娥二号”于2010年10月1日18时59分57秒发射升空,飞行速度:15千米/秒,预计5日内到达指定轨道,若到达轨道时飞行了4.32×105秒,计算此时“嫦娥二号”飞行的路程(结果用科学计数法表示). 思考:大家想了解一下“嫦娥二号”在太空中飞行的过程,但需要输入密码才能打开.现在知道 xm=32,xn=8,密码就是x m +n的值.你能帮助老师破解密码吗? 四.【总结提升】 谈谈你这一节课有哪些收获. 2查看更多