2016届高考数学(理)5年高考真题备考试题库:第2章 第2节 函数的单调性与最值

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2016届高考数学(理)5年高考真题备考试题库:第2章 第2节 函数的单调性与最值

‎2010~2014年高考真题备选题库 第二章 函 数 第二节 函数的单调性与最值 ‎1. (2014福建,5分)已知函数f(x)=则下列结论正确的是(  )‎ A.f(x)是偶函数 B.f(x)是增函数 C.f(x)是周期函数 D.f(x)的值域为[-1,+∞)‎ 解析:因为f(π)=π2+1,f(-π)=-1,所以f(-π)≠f(π),所以函数f(x)不是偶函数,排除A;因为函数f(x)在(-2π,-π)上单调递减,排除B;函数f(x)在(0,+∞)上单调递增,所以函数f(x)不是周期函数,排除C;因为x>0时,f(x)>1,x≤0时,-1≤f(x)≤1,所以函数f(x)的值域为[-1,+∞),故选D.‎ 答案:D ‎2. (2014北京,5分)下列函数中,在区间(0,+∞)上为增函数的是(  )‎ A.y= B.y=(x-1)2‎ C.y=2-x D.y=log0.5(x+1)‎ 解析:显然y=是(0,+∞)上的增函数;y=(x-1)2在(0,1)上是减函数,在(1,+∞)上是增函数;y=2-x=x在x∈R上是减函数;y=log0.5(x+1)在(-1,+∞)上是减函数,故选A.‎ 答案:A ‎3. (2014四川,5分)以A表示值域为R的函数组成的集合,B表示具有如下性质的函数φ(x)组成的集合:对于函数φ(x),存在一个正数M,使得函数φ(x)的值域包含于区间[-M,M].例如,当φ1(x)=x3,φ2(x)=sin x时,φ1(x)∈A,φ2(x)∈B.现有如下命题:‎ ‎①设函数f(x)的定义域为D,则“f(x)∈A”的充要条件是“∀b∈R,∃a∈D,f(a)=b”;‎ ‎②函数f(x)∈B的充要条件是f(x)有最大值和最小值;‎ ‎③若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)+g(x)∉B;‎ ‎④若函数f(x)=aln(x+2)+(x>-2,a∈R)有最大值,则f(x)∈B.‎ 其中的真命题有________.(写出所有真命题的序号)‎ 解析:对于①,根据题中定义,f(x)∈A⇔函数y=f(x),x∈D的值域为R,由函数值域的概念知,函数y=f(x),x∈D的值域为R⇔∀b∈R,∃a∈D,f(a)=b,所以①正确;对于②‎ ‎,例如函数f(x)=|x|的值域(0,1]包含于区间[-1,1],所以f(x)∈B,但f(x)有最大值1,没有最小值,所以②错误;对于③,若f(x)+g(x)∈B,则存在一个正数M1,使得函数f(x)+g(x)的值域包含于区间[-M1,M1],所以-M1≤f(x)+g(x)≤M1,由g(x)∈B知,存在一个正数M2,使得函数g(x)的值域包含于区间[-M2,M2],所以-M2≤g(x)≤M2,亦有-M2≤-g(x)≤M2,两式相加得-(M1+M2)≤f(x)≤M1+M2,于是f(x)∈B,与已知“f(x)∈A”矛盾,故f(x)+g(x)∉B,即③正确;对于④,如果a>0,那么x→+∞,f(x)→+∞,如果a<0,那么x→-2,f(x)→+∞,所以f(x)有最大值,必须a=0,此时f(x)=在区间(-2,+∞)上,有-≤f(x)≤,所以f(x)∈B,即④正确,故填①③④.‎ 答案:①③④‎ ‎4.(2013湖北,5分)x为实数,[x]表示不超过x的最大整数,则函数f(x)=x-[x]在R上为(  )‎ A.奇函数 B.偶函数 C.增函数 D.周期函数 解析:本题主要考查函数的图像和性质.当x∈[0,1)时,画出函数图像(图略),再左右扩展知f(x)为周期函数.故选D.‎ 答案:D ‎5.(2012山东,5分)设a>0且a≠1,则“函数f(x)=ax在R上是减函数”是“函数g(x)=(2-a)x3在R上是增函数”的(  )‎ A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 解析:若函数f(x)=ax在R上为减函数,则有00,即a<2,所以“函数f(x)=ax在R上是减函数”是“函数g(x)=(2-a)x3在R上是增函数”的充分不必要条件.‎ 答案:A ‎6.(2012广东,5分)下列函数中,在区间(0,+∞)上为增函数的是(  )‎ A.y=ln(x+2) B.y=- C.y=()x D.y=x+ 解析:选项A的函数y=ln(x+2)的增区间为(-2,+∞),所以在(0,+∞)上一定是增函数.‎ 答案:A ‎7.(2012陕西,5分)下列函数中,既是奇函数又是增函数的为(  )‎ A.y=x+1 B.y=-x3‎ C.y= D.y=x|x|‎ 解析:由函数的奇偶性排除A,由函数的单调性排除B、C,由y=x|x|的图像可知当x>0时此函数为增函数,又该函数为奇函数,故选D.‎ 答案:D
查看更多

相关文章

您可能关注的文档