- 2021-05-24 发布 |
- 37.5 KB |
- 14页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
天津高考数学真题附答案解析
2018年天津高考数学真题(附答案解析) 1.选择题(每小题5分,满分40分):在每小题给出的四个选项中,只有一项是符合题目要求的. A. B. C. D. 2. A. 6 B. 19 C. 21 D. 45 3.阅读如图的程序框图,运行相应的程序,若输入N的值为20,则输出T的值为 A. 1 B. 2 C. 3 D. 4 4. A. 充分而不必要条件 B. 必要而不充分条件 C. 充要条件 D. 既不充分也不必要条件 5. A. B. C. D. 6. 7. A. A B. B C. C D. D 8. A. A B. B C. C D. D 填空题 (本大题共6小题,每小题____分,共____分。) 9.. 填空题:本大题共6小题,每小题5分,共30分。 10. 11. 已知正方体的棱长为1,除面外,该正方体其余各面的中心分别为点E,F,G,H,M(如图),则四棱锥的体积为____. 12.已知圆的圆心为C,直线(为参数)与该圆相交于A,B两点,则的面积为____. 13.已知,且,则的最小值为____. 14.已知,函数若关于的方程恰有2个互异的实数解,则的取值范围是____. 简答题(综合题) (本大题共6小题,每小题____分,共____分。) 15..解答题:本大题共6小题,共80分. 解答应写出文字说明,证明过程或演算步骤. (本小题满分13分) 在中,内角A,B,C所对的边分别为a,b,c.已知. (I)求角B的大小; (II)设a=2,c=3,求b和的值. 16. (本小题满分13分) 已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16. 现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查. (I)应从甲、乙、丙三个部门的员工中分别抽取多少人? (II)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查. (i)用X表示抽取的3人中睡眠不足的员工人数,求随机变量X的分布列与数学期望; (ii)设A为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A发生的概率. 17.(本小题满分13分) 如图,且AD=2BC,,且EG=AD,且CD=2FG,,DA=DC=DG=2. (I)若M为CF的中点,N为EG的中点,求证:; (II)求二面角的正弦值; (III)若点P在线段DG上,且直线BP与平面ADGE所成的角为60°,求线段DP的长. 18.(本小题满分13分) 设是等比数列,公比大于0,其前n项和为,是等差数列. 已知,,,. (I)求和的通项公式; (II)设数列的前n项和为, (i)求; (ii)证明. 19.(本小题满分14分) 设椭圆(a>b>0)的左焦点为F,上顶点为B. 已知椭圆的离心率为,点A的坐标为,且. (I)求椭圆的方程; (II)设直线l:与椭圆在第一象限的交点为P,且l与直线AB交于点Q. 若(O为原点) ,求k的值. 20.(本小题满分14分) 已知函数,,其中a>1. (I)求函数的单调区间; (II)若曲线在点处的切线与曲线在点 处的切线平行,证明; (III)证明当时,存在直线l,使l是曲线的切线,也是曲线的切线. 答案 单选题 1. B 2. C 3. B 4. A 5. D 6. A 7. C 8. A 填空题 9. 4-i 10. 11. 12. 13. 14. (4,8) 简答题 15. (15)本小题主要考查同角三角函数的基本关系,两角差的正弦与余弦公式,二倍角的正弦与余弦公式,以及正弦定理、余弦定理等基础知识,考查运算求解能力.满分13分. (Ⅰ)解:在△ABC中,由正弦定理,可得,又由,得,即,可得.又因为,可得B=. (Ⅱ)解:在△ABC中,由余弦定理及a=2,c=3,B=,有,故b=. 由,可得.因为a查看更多