- 2021-05-19 发布 |
- 37.5 KB |
- 6页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高考文科数学向量专题讲解及高考真题精选含答案
向 量 1.向量的概念 (1)向量的基本要素:大小和方向.(2)向量的表示:几何表示法 ;字母表示:a; 坐标表示法 a=xi+yj=(x,y). (3)向量的长度:即向量的大小,记作|a|. (4)特殊的向量:零向量a=O|a|=O. 单位向量aO为单位向量|aO|=1. (5)相等的向量:大小相等,方向相同(x1,y1)=(x2,y2) (6) 相反向量:a=-bb=-aa+b=0 (7)平行向量(共线向量):方向相同或相反的向量,称为平行向量.记作a∥b.平行向量也称为共线向量. 2..向量的运算 运算类型 几何方法 坐标方法 运算性质 向量的 加法 1.平行四边形法则 2.三角形法则 向量的 减法 三角形法则 , 数 乘 向 量 1.是一个向量,满足: 2.>0时, 同向; <0时, 异向; =0时, . 向 量 的 数 量 积 是一个数 1.时, . 2. 3.向量加法运算: ⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点. ⑶三角形不等式:. ⑷运算性质:①交换律:; ②结合律:;③. ⑸坐标运算:设,,则. 4.向量减法运算: ⑴三角形法则的特点:共起点,连终点,方向指向被减向量. ⑵坐标运算:设,,则. 设、两点的坐标分别为,,则. 5.向量数乘运算: ⑴实数与向量的积是一个向量的运算叫做向量的数乘,记作. ①; ②当时,的方向与的方向相同;当时,的方向与的方向相反;当时,. ⑵运算律:①;②;③. ⑶坐标运算:设,则. 6.向量共线定理:向量与共线,当且仅当有唯一一个实数,使. 设,,其中,则当且仅当时,向量、共线. 7.平面向量基本定理:如果、是同一平面内的两个不共线向量,那么对于这一平面内的任意向量,有且只有一对实数、,使.(不共线的向量、作为这一平面内所有向量的一组基底) 8.分点坐标公式:设点是线段上的一点,、的坐标分别是,,当 时,点的坐标是.(当 9.平面向量的数量积: ⑴.零向量与任一向量的数量积为. ⑵性质:设和都是非零向量,则①.②当与同向时,;当与反向时,;或.③. ⑶运算律:①;②;③. ⑷坐标运算:设两个非零向量,,则. 若,则,或. 设,,则. 设、都是非零向量,,,是与的夹角,则. ⑤线段的定比分点公式:(和) 设 =(或=),且的坐标分别是,则 推广1:当时,得线段的中点公式: 推广2:则(对应终点向量). 三角形重心坐标公式:△ABC的顶点,重心坐标: 注意:在△ABC中,若0为重心,则,这是充要条件. ⑥平移公式:若点P按向量=平移到P‘,则 4.(1)正弦定理:设△ABC的三边为a、b、c,所对的角为A、B、C,则. (2)余弦定理: (3)正切定理: (4)三角形面积计算公式: 设△ABC的三边为a,b,c,其高分别为ha,hb,hc,半周长为P,外接圆、内切圆的半径为R,r. ①S△=1/2aha=1/2bhb=1/2chc ②S△=Pr ③S△=abc/4R ④S△=1/2sinC·ab=1/2ac·sinB=1/2cb·sinA ⑤S△= [海伦公式] ⑥S△=1/2(b+c-a)ra[如下图]=1/2(b+a-c)rc=1/2(a+c-b)rb [注]:到三角形三边的距离相等的点有4个,一个是内心,其余3个是旁心. 如图:图1中的I为S△ABC的内心, S△=Pr,图2中的I为S△ABC的一个旁心,S△=1/2(b+c-a)ra 附:三角形的五个“心”; 重心:三角形三条中线交点. 外心:三角形三边垂直平分线相交于一点. 内心:三角形三内角的平分线相交于一点. 垂心:三角形三边上的高相交于一点. 旁心:三角形一内角的平分线与另两条内角的外角平分线相交一点. (5)已知⊙O是△ABC的内切圆,若BC=a,AC=b,AB=c [注:s为△ABC的半周长,即],则:①AE==1/2(b+c-a) ②BN==1/2(a+c-b) ③FC==1/2(a+b-c) 综合上述:由已知得,一个角的邻边的切线长,等于半周长减去对边(如图4). 特例:已知在Rt△ABC,c为斜边,则内切圆半径r=(如图3). (6)在△ABC中,有下列等式成立. 证明:因为所以,所以,结论! (7)在△ABC中,D是BC上任意一点,则. 证明:在△ABCD中,由余弦定理,有① 在△ABC中,由余弦定理有②, ②代入①,化简可得,(斯德瓦定理) ①若AD是BC上的中线,; ②若AD是∠A的平分线,,其中为半周长; ③若AD是BC上的高,,其中为半周长. (8)△ABC的判定: △ABC为直角△∠A + ∠B = <△ABC为钝角△∠A + ∠B< >△ABC为锐角△∠A + ∠B> 附:证明:,得在钝角△ABC中, (9)平行四边形对角线定理:对角线的平方和等于四边的平方和. 09-13高考真题 09.7. 函数的图像F按向量a平移到F/,F/的解析式y=f(x),当y=f(x)为奇函数时,向量a可以等于 A. B. C. D. 【答案】D 09.1. 若向量a=(1,1),b=(-1,1),c=(4,2),则c= A. 3a+b B. 3a-b C.-a+3b D. a+3b 【答案】B 10.8. 已知和点M满足.若存在实使得成立,则=B A.2 B.3 C.4 D.5 11.2. 若向量,,则与的夹角等于 A. B. C. D. 【详细解析】 分别求出与的坐标,再求出,,带入公式求夹角。 【考点定位】 考查向量的夹角公式cosθ=,属于简单题. 12.13 .已知向量,则 (1)与同向的单位向量的坐标表示为___; (2)向量与向量夹角的余弦值为____查看更多