- 2021-05-11 发布 |
- 37.5 KB |
- 25页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
中考压轴题暑假题
2014暑假压轴题训练(50题) 1. 在直角梯形中,,高(如图1)。动点同时从点出发,点沿运动到点停止,点沿运动到点停止,两点运动时的速度都是。而当点到达点时,点正好到达点。设同时从点出发,经过的时间为时,的面积为(如图2)。分别以为横、纵坐标建立直角坐标系,已知点在边上从到运动时,与的函数图象是图3中的线段。 (1)分别求出梯形中的长度; (2)写出图3中两点的坐标; (3)分别写出点在边上和边上运动时,与的函数关系式(注明自变量的取值范围)。 (图2) (图1) 2.在中,现有两个动点P、Q分别从点A和点B同时出发,其中点P以1cm/s的速度,沿AC向终点C移动;点Q以1.25cm/s的速度沿BC向终点C移动。过点P作PE∥BC交AD于点E,连结EQ。设动点运动时间为x秒。 (1)用含x的代数式表示AE、DE的长度; (2)当点Q在BD(不包括点B、D)上移动时,设的面积为,求与月份的函数关系式,并写出自变量的取值范围; (3)当为何值时,为直角三角形。 3. 如图1,在平面直角坐标系中,已知点,点在正半轴上,且.动点在线段上从点向点以每秒个单位的速度运动,设运动时间为秒.在轴上取两点作等边. (1)求直线的解析式; (2)求等边的边长(用的代数式表示),并求出当等边的顶点运动到与原点重合时的值; (3)如果取的中点,以为边在内部作如图2所示的矩形,点在线段上.设等边和矩形重叠部分的面积为,请求出当秒时与的函数关系式,并求出的最大值. (图1) (图2) A B C O D E F 4.如图,在平面直角坐标系中,直角梯形的边落在轴的正半轴上,且∥,,=4,=6,=8.正方形的两边分别落在坐标轴上,且它的面积等于直角梯形面积.将正方形沿轴的正半轴平行移动,设它与直角梯形的重叠部分面积为. (1)分析与计算: 求正方形的边长; (2)操作与求解: (备用图) A B C ①正方形平行移动过程中,通过操作、观察,试判断(>0)的变化情况是 ; A.逐渐增大 B.逐渐减少 C.先增大后减少 D.先减少后增大 ②当正方形顶点移动到点时,求的值; (3)探究与归纳: 设正方形的顶点向右移动的距离为,求重叠部分面积与的函数关系式. O x y (第24题) C B E D 5.如图,四边形是一张放在平面直角坐标系中的矩形纸片, 点在轴上,点在轴上,将边折叠,使点落在边的点处.已知折叠,且. (1)判断与是否相似?请说明理由; (2)求直线与轴交点的坐标; (3)是否存在过点的直线,使直线、直线与轴所围成的三角形和直线、直线与轴所围成的三角形相似?如果存在,请直接写出其解析式并画出相应的直线;如果不存在,请说明理由. 6.如图,已知A(8,0),B(0,6),两个动点P、Q同时在△OAB的边上按逆时针方向(→O→A→B→O→)运动,开始时点P在点B位置,点Q在点O位置,点P的运动速度为每秒2个单位,点Q的运动速度为每秒1个单位. (1)在前3秒内,求△OPQ的最大面积; (2)在前10秒内,求P、Q两点之间的最小距离,并求此时点P、Q的坐标; (3)在前15秒内,探究PQ平行于△OAB一边的情况,并求平行时点P、Q的坐标. 7. 如图,点 (n是正整数)依次为一次函数的图像上的点,点 (n是正整数)依次是x轴正半轴上的点,已知,分别是以为顶点的等腰三角形。 (1)写出两点的坐标; (2)求(用含a的代数式表示);分析图形中各等腰三角形底边长度之间的关系,写出你认为成立的两个结论; (3)当变化时,在上述所有的等腰三角形中,是否存在直角三角形?若存在,求出相应的a的值;若不存在,请说明理由。 8. 如图12,已知直线与双曲线交于两点,且点的横坐标为. (1)求的值; (2)若双曲线上一点的纵坐标为8,求的面积; 图12 (3)过原点的另一条直线交双曲线于两点(点在第一象限),若由点为顶点组成的四边形面积为,求点的坐标. 9. 已知点P(m,n)(m>0)在直线y=x+b(0查看更多
相关文章
- 当前文档收益归属上传用户
- 下载本文档