山东省临沂市中考数学试卷及答案与解析

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

山东省临沂市中考数学试卷及答案与解析

‎2017年山东省临沂市中考数学试卷 参考答案与试题解析 ‎ ‎ 一、选择题(本大题共14小题,每小题3分,共42分)‎ ‎1.(3分)(2017•临沂)﹣的相反数是(  )‎ A. B.﹣ C.2017 D.﹣2017‎ ‎【解答】解:﹣的相反数是:.‎ 故选:A.‎ ‎ ‎ ‎2.(3分)(2017•临沂)如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是(  )‎ A.50° B.60° C.70° D.80°‎ ‎【解答】解:∵∠BEF是△AEF的外角,∠1=20°,∠F=30°,‎ ‎∴∠BEF=∠1+∠F=50°,‎ ‎∵AB∥CD,‎ ‎∴∠2=∠BEF=50°,‎ 故选A.‎ ‎ ‎ ‎3.(3分)(2017•临沂)下列计算正确的是(  )‎ A.﹣(a﹣b)=﹣a﹣b B.a2+a2=a4 C.a2•a3=a6 D.(ab2)2=a2b4‎ ‎【解答】解:A、括号前是负号,去括号全变号,故A不符合题意;‎ B、不是同底数幂的乘法指数不能相加,故B不符合题意;‎ C、同底数幂的乘法底数不变指数相加,故C不符合题意;‎ D、积的乘方等于乘方的积,故D符合题意;‎ 故选:D.‎ ‎ ‎ ‎4.(3分)(2017•临沂)不等式组中,不等式①和②的解集在数轴上表示正确的是(  )‎ A. B. C. D.‎ ‎【解答】解:解不等式①,得:x<1,‎ 解不等式②,得:x≥﹣3,‎ 则不等式组的解集为﹣3≤x<1,‎ 故选:B.‎ ‎ ‎ ‎5.(3分)(2017•临沂)如图所示的几何体是由五个小正方体组成的,它的左视图是(  )‎ A. B. C. D.‎ ‎【解答】解:该几何体的三视图如下:‎ 主视图:;俯视图:;左视图:,‎ 故选:D.‎ ‎ ‎ ‎6.(3分)(2017•临沂)小明和小华玩“石头、剪子、布”的游戏,若随机出手一次,则小华获胜的概率是(  )‎ A. B. C. D.‎ ‎【解答】解:画树状图得:‎ ‎∵共有9种等可能的结果,小华获胜的情况数是3种,‎ ‎∴小华获胜的概率是:=.‎ 故选C.‎ ‎ ‎ ‎7.(3分)(2017•临沂)一个多边形的内角和是外角和的2倍,则这个多边形是(  )‎ A.四边形 B.五边形 C.六边形 D.八边形 ‎【解答】解:设所求正n边形边数为n,由题意得 ‎(n﹣2)•180°=360°×2‎ 解得n=6.‎ 则这个多边形是六边形.‎ 故选:C.‎ ‎ ‎ ‎8.(3分)(2017•临沂)甲、乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用时间与乙做60个所用时间相等,求甲、乙每小时各做零件多少个.如果设乙每小时做x个,那么所列方程是(  )‎ A.= B.= C.= D.=‎ ‎【解答】解:设乙每小时做x个,甲每小时做(x+6)个,‎ 根据甲做90个所用时间与乙做60个所用时间相等,得 ‎=,‎ 故选:B.‎ ‎ ‎ ‎9.(3分)(2017•临沂)某公司有15名员工,他们所在部门及相应每人所创年利润如下表所示:‎ 部门 人数 每人创年利润(万元)‎ A ‎1‎ ‎10‎ B ‎3‎ ‎8‎ C ‎7‎ ‎5‎ D ‎4‎ ‎3‎ 这15名员工每人所创年利润的众数、中位数分别是(  )‎ A.10,5 B.7,8 C.5,6.5 D.5,5‎ ‎【解答】解:由题意可得,‎ 这15名员工的每人创年利润为:10、8、8、8、5、5、5、5、5、5、5、3、3、3、3,‎ ‎∴这组数据的众数是5,中位数是5,‎ 故选D.‎ ‎ ‎ ‎10.(3分)(2017•临沂)如图,AB是⊙O的直径,BT是⊙O的切线,若∠ATB=45°,AB=2,则阴影部分的面积是(  )‎ A.2 B.﹣π C.1 D.+π ‎【解答】解:∵BT是⊙O的切线;‎ 设AT交⊙O于D,连结BD,‎ ‎∵AB是⊙O的直径,‎ ‎∴∠ADB=90°,‎ 而∠ATB=45°,‎ ‎∴△ADB、△BDT都是等腰直角三角形,‎ ‎∴AD=BD=TD=AB=,‎ ‎∴弓形AD的面积等于弓形BD的面积,‎ ‎∴阴影部分的面积=S△BTD=××=1.‎ 故选C.‎ ‎ ‎ ‎11.(3分)(2017•临沂)将一些相同的“○”按如图所示摆放,观察每个图形中的“○”的个数,若第n个图形中“○”的个数是78,则n的值是(  )‎ A.11 B.12 C.13 D.14‎ ‎【解答】解:第1个图形有1个小圆;‎ 第2个图形有1+2=3个小圆;‎ 第3个图形有1+2+3=6个小圆;‎ 第4个图形有1+2+3+4=10个小圆;‎ 第n个图形有1+2+3+…+n=个小圆;‎ ‎∵第n个图形中“○”的个数是78,‎ ‎∴78=,‎ 解得:n1=12,n2=﹣13(不合题意舍去),‎ 故选:B.‎ ‎ ‎ ‎12.(3分)(2017•临沂)在△ABC中,点D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,下列说法正确的是(  )‎ A.若AD⊥BC,则四边形AEDF是矩形 B.若AD垂直平分BC,则四边形AEDF是矩形 C.若BD=CD,则四边形AEDF是菱形 D.若AD平分∠BAC,则四边形AEDF是菱形 ‎【解答】解:若AD⊥BC,则四边形AEDF是平行四边形,不一定是矩形;选项A错误;‎ 若AD垂直平分BC,则四边形AEDF是菱形,不一定是矩形;选项B错误;‎ 若BD=CD,则四边形AEDF是平行四边形,不一定是菱形;选项C错误;‎ 若AD平分∠BAC,则四边形AEDF是菱形;正确;故选:D.‎ ‎ ‎ ‎13.(3分)(2017•临沂)足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:‎ ‎ t ‎ 0‎ ‎ 1‎ ‎ 2‎ ‎ 3‎ ‎ 4‎ ‎ 5‎ ‎ 6‎ ‎ 7‎ ‎…‎ ‎ h ‎ 0‎ ‎ 8‎ ‎ 14‎ ‎ 18‎ ‎ 20‎ ‎ 20‎ ‎ 18‎ ‎ 14‎ ‎…‎ 下列结论:①足球距离地面的最大高度为20m;②足球飞行路线的对称轴是直线t=;③足球被踢出9s时落地;④足球被踢出1.5s时,距离地面的高度是11m,其中正确结论的个数是(  )‎ A.1 B.2 C.3 D.4‎ ‎【解答】解:由题意,抛物线的解析式为y=ax(x﹣9),把(1,8)代入可得a=﹣1,‎ ‎∴y=﹣t2+9t=﹣(t﹣4.5)2+20.25,‎ ‎∴足球距离地面的最大高度为20.25m,故①错误,‎ ‎∴抛物线的对称轴t=4.5,故②正确,‎ ‎∵t=9时,y=0,‎ ‎∴足球被踢出9s时落地,故③正确,‎ ‎∵t=1.5时,y=11.25,故④错误.‎ ‎∴正确的有②③,‎ 故选B.‎ ‎ ‎ ‎14.(3分)(2017•临沂)如图,在平面直角坐标系中,反比例函数y=(x>0)的图象与边长是6的正方形OABC的两边AB,BC分别相交于M,N 两点,△OMN的面积为10.若动点P在x轴上,则PM+PN的最小值是(  )‎ A.6 B.10 C.2 D.2‎ ‎【解答】解:∵正方形OABC的边长是6,‎ ‎∴点M的横坐标和点N的纵坐标为6,‎ ‎∴M(6,),N(,6),‎ ‎∴BN=6﹣,BM=6﹣,‎ ‎∵△OMN的面积为10,‎ ‎∴6×6﹣×6×﹣6×﹣×(6﹣)2=10,‎ ‎∴k=24,‎ ‎∴M(6,4),N(4,6),‎ 作M关于x轴的对称点M′,连接NM′交x轴于P,则NM′的长=PM+PN的最小值,‎ ‎∵AM=AM′=4,‎ ‎∴BM′=10,BN=2,‎ ‎∴NM′===2,‎ 故选C.‎ ‎ ‎ 二、填空题(本大题共5小题,每小题3分,共15分)‎ ‎15.(3分)(2017•临沂)分解因式:m3﹣9m= m(m+3)(m﹣3) .‎ ‎【解答】解:m3﹣9m,‎ ‎=m(m2﹣9),‎ ‎=m(m+3)(m﹣3).‎ 故答案为:m(m+3)(m﹣3).‎ ‎ ‎ ‎16.(3分)(2017•临沂)已知AB∥CD,AD与BC相交于点O.若=,AD=10,则AO= 4 .‎ ‎【解答】解:∵AB∥CD,‎ ‎∴==,即=,‎ 解得,AO=4,‎ 故答案为:4.‎ ‎ ‎ ‎17.(3分)(2017•临沂)计算:÷(x﹣)=  .‎ ‎【解答】解:原式=÷‎ ‎=•‎ ‎=,‎ 故答案为:.‎ ‎ ‎ ‎18.(3分)(2017•临沂)在▱ABCD中,对角线AC,BD相交于点O,若AB=4,BD=10,sin∠BDC=,则▱ABCD的面积是 24 .‎ ‎【解答】解:作OE⊥CD于E,如图所示:‎ ‎∵四边形ABCD是平行四边形,‎ ‎∴OA=OC,OB=OD=BD=5,CD=AB=4,‎ ‎∵sin∠BDC==,‎ ‎∴OE=3,‎ ‎∴DE==4,‎ ‎∵CD=4,‎ ‎∴点E与点C重合,‎ ‎∴AC⊥CD,OC=3,‎ ‎∴AC=2OC=6,‎ ‎∴▱ABCD的面积=CD•AC=4×6=24;‎ 故答案为:24.‎ ‎ ‎ ‎19.(3分)(2017•临沂)在平面直角坐标系中,如果点P坐标为(m,n),向量可以用点P的坐标表示为=(m,n).‎ 已知:=(x1,y1),=(x2,y2),如果x1•x2+y1•y2=0,那么与互相垂直,下列四组向量:‎ ‎①=(2,1),=(﹣1,2);‎ ‎②=(cos30°,tan45°),=(1,sin60°);‎ ‎③=(﹣,﹣2),=(+,);‎ ‎④=(π0,2),=(2,﹣1).‎ 其中互相垂直的是 ①③④ (填上所有正确答案的符号).‎ ‎【解答】解:①因为2×(﹣1)+1×2=0,所以与互相垂直;‎ ‎②因为cos30°×1+tan45°•sin60°=×1+1×=≠0,所以与不互相垂直;‎ ‎③因为(﹣)(+)+(﹣2)×=3﹣2﹣1=0,所以与互相垂直;‎ ‎④因为π0×2+2×(﹣1)=2﹣2=0,所以与互相垂直.‎ 综上所述,①③④互相垂直.‎ 故答案是:①③④.‎ ‎ ‎ 三、解答题(本大题共7小题,共63分)‎ ‎20.(7分)(2017•临沂)计算:|1﹣|+2cos45°﹣+()﹣1.‎ ‎【解答】解:‎ ‎|1﹣|+2cos45°﹣+()﹣1‎ ‎=﹣1+2×﹣2+2‎ ‎=﹣1+﹣2+2‎ ‎=1.‎ ‎ ‎ ‎21.(7分)(2017•临沂)为了解某校学生对《最强大脑》、《朗读者》、《中国诗词大会》、《出彩中国人》四个电视节目的喜爱情况,随机抽取了x名学生进行调查统计9要求每名学生选出并且只能选出一个自己最喜爱的节目),并将调查结果绘制成如下统计图表:‎ ‎ 学生最喜爱的节目人数统计表 ‎ 节目 ‎ 人数(名)‎ ‎ 百分比 ‎ 最强大脑 ‎ 5‎ ‎ 10%‎ ‎ 朗读者 ‎ 15‎ ‎ b%‎ ‎ 中国诗词大会 ‎ a ‎ 40%‎ ‎ 出彩中国人 ‎ 10‎ ‎ 20%‎ 根据以上提供的信息,解答下列问题:‎ ‎(1)x= 50 ,a= 20 ,b= 30 ;‎ ‎(2)补全上面的条形统计图;‎ ‎(3)若该校共有学生1000名,根据抽样调查结果,估计该校最喜爱《中国诗词大会》节目的学生有多少名.‎ ‎【解答】解:(1)根据题意得:x=5÷10%=50,a=50×40%=20,b=×100=30;‎ 故答案为:50;20;30;‎ ‎(2)中国诗词大会的人数为20人,补全条形统计图,如图所示:‎ ‎(3)根据题意得:1000×40%=400(名),‎ 则估计该校最喜爱《中国诗词大会》节目的学生有400名.‎ ‎ ‎ ‎22.(7分)(2017•临沂)如图,两座建筑物的水平距离BC=30m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°,求这两座建筑物的高度.‎ ‎【解答】解:延长CD,交AE于点E,可得DE⊥AE,‎ 在Rt△AED中,AE=BC=30m,∠EAD=30°,‎ ‎∴ED=AEtan30°=10m,‎ 在Rt△ABC中,∠BAC=30°,BC=30m,‎ ‎∴AB=30m,‎ 则CD=EC﹣ED=AB﹣ED=30﹣10=20m.‎ ‎ ‎ ‎23.(9分)(2017•临沂)如图,∠BAC的平分线交△ABC的外接圆于点D,∠ABC的平分线交AD于点E,‎ ‎(1)求证:DE=DB;‎ ‎(2)若∠BAC=90°,BD=4,求△ABC外接圆的半径.‎ ‎【解答】(1)证明:∵BE平分∠BAC,AD平分∠ABC,‎ ‎∴∠ABE=∠CBE,∠BAE=∠CAD,‎ ‎∴,‎ ‎∴∠DBC=∠CAD,‎ ‎∴∠DBC=∠BAE,‎ ‎∵∠DBE=∠CBE+∠DBC,∠DEB=∠ABE+∠BAE,‎ ‎∴∠DBE=∠DEB,‎ ‎∴DE=DB;‎ ‎(2)解:连接CD,如图所示:‎ 由(1)得:,‎ ‎∴CD=BD=4,‎ ‎∵∠BAC=90°,‎ ‎∴BC是直径,‎ ‎∴∠BDC=90°,‎ ‎∴BC==4,‎ ‎∴△ABC外接圆的半径=×4=2.‎ ‎ ‎ ‎24.(9分)(2017•临沂)某市为节约水资源,制定了新的居民用水收费标准,按照新标准,用户每月缴纳的水费y(元)与每月用水量x(m3)之间的关系如图所示.‎ ‎(1)求y关于x的函数解析式;‎ ‎(2)若某用户二、三月份共用水40cm3(二月份用水量不超过25cm3),缴纳水费79.8元,则该用户二、三月份的用水量各是多少m3?‎ ‎【解答】解:(1)当0≤x≤15时,设y与x的函数关系式为y=kx,‎ ‎15k=27,得k=1.8,‎ 即当0≤x≤15时,y与x的函数关系式为y=1.8x,‎ 当x>15时,设y与x的函数关系式为y=ax+b,‎ ‎,得,‎ 即当x>15时,y与x的函数关系式为y=2.4x﹣9,‎ 由上可得,y与x的函数关系式为y=;‎ ‎(2)设二月份的用水量是xm3,‎ 当15<x≤25时,2.4x﹣9+2.4(40﹣x)﹣9=79.8,‎ 解得,x无解,‎ 当0<x≤15时,1.8x+2.4(40﹣x)﹣9=79.8,‎ 解得,x=12,‎ ‎∴40﹣x=28,‎ 答:该用户二、三月份的用水量各是12m3、28m3.‎ ‎ ‎ ‎25.(11分)(2017•临沂)数学课上,张老师出示了问题:如图1,AC,BD是四边形ABCD的对角线,若∠ACB=∠ACD=∠ABD=∠ADB=60°,则线段BC,CD,AC三者之间有何等量关系?‎ 经过思考,小明展示了一种正确的思路:如图2,延长CB到E,使BE=CD,连接AE,证得△ABE≌△ADC,从而容易证明△ACE是等边三角形,故AC=CE,所以AC=BC+CD.‎ 小亮展示了另一种正确的思路:如图3,将△ABC绕着点A逆时针旋转60°,使AB与AD重合,从而容易证明△ACF是等边三角形,故AC=CF,所以AC=BC+CD.‎ 在此基础上,同学们作了进一步的研究:‎ ‎(1)小颖提出:如图4,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=45°”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小颖提出的问题,请你写出结论,并给出证明.‎ ‎(2)小华提出:如图5,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=α”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小华提出的问题,请你写出结论,不用证明.‎ ‎【解答】解:(1)BC+CD=AC;‎ 理由:如图1,‎ 延长CD至E,使DE=BC,‎ ‎∵∠ABD=∠ADB=45°,‎ ‎∴AB=AD,∠BAD=180°﹣∠ABD﹣∠ADB=90°,‎ ‎∵∠ACB=∠ACD=45°,‎ ‎∴∠ACB+∠ACD=45°,‎ ‎∴∠BAD+∠BCD=180°,‎ ‎∴∠ABC+∠ADC=180°,‎ ‎∵∠ADC+∠ADE=180°,‎ ‎∴∠ABC=∠ADE,‎ 在△ABC和△ADE中,,‎ ‎∴△ABC≌△ADE(SAS),‎ ‎∴∠ACB=∠AED=45°,AC=AE,‎ ‎∴△ACE是等腰直角三角形,‎ ‎∴CE=AC,‎ ‎∵CE=CE+DE=CD+BC,‎ ‎∴BC+CD=AC;‎ ‎(2)BC+CD=2AC•cosα.理由:如图2,‎ 延长CD至E,使DE=BC,‎ ‎∵∠ABD=∠ADB=α,‎ ‎∴AB=AD,∠BAD=180°﹣∠ABD﹣∠ADB=180°﹣2α,‎ ‎∵∠ACB=∠ACD=α,‎ ‎∴∠ACB+∠ACD=2α,‎ ‎∴∠BAD+∠BCD=180°,‎ ‎∴∠ABC+∠ADC=180°,‎ ‎∵∠ADC+∠ADE=180°,‎ ‎∴∠ABC=∠ADE,‎ 在△ABC和△ADE中,,‎ ‎∴△ABC≌△ADE(SAS),‎ ‎∴∠ACB=∠AED=α,AC=AE,‎ ‎∴∠AEC=α,‎ 过点A作AF⊥CE于F,‎ ‎∴CE=2CF,在Rt△ACF中,∠ACD=α,CF=AC•cos∠ACD=AC•cosα,‎ ‎∴CE=2CF=2AC•cosα,‎ ‎∵CE=CD+DE=CD+BC,‎ ‎∴BC+CD=2AC•cosα.‎ ‎ ‎ ‎26.(13分)(2017•临沂)如图,抛物线y=ax2+bx﹣3经过点A(2,﹣3),与x轴负半轴交于点B,与y轴交于点C,且OC=3OB.‎ ‎(1)求抛物线的解析式;‎ ‎(2)点D在y轴上,且∠BDO=∠BAC,求点D的坐标;‎ ‎(3)点M在抛物线上,点N在抛物线的对称轴上,是否存在以点A,B,M,N为顶点的四边形是平行四边形?若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由.‎ ‎【解答】解:(1)由y=ax2+bx﹣3得C(0.﹣3),‎ ‎∴OC=3,‎ ‎∵OC=3OB,‎ ‎∴OB=1,‎ ‎∴B(﹣1,0),‎ 把A(2,﹣3),B(﹣1,0)代入y=ax2+bx﹣3得,‎ ‎∴,‎ ‎∴抛物线的解析式为y=x2﹣2x﹣3;‎ ‎(2)设连接AC,作BF⊥AC交AC的延长线于F,‎ ‎∵A(2,﹣3),C(0,﹣3),‎ ‎∴AF∥x轴,‎ ‎∴F(﹣1,﹣3),‎ ‎∴BF=3,AF=3,‎ ‎∴∠BAC=45°,‎ 设D(0,m),则OD=|m|,‎ ‎∵∠BDO=∠BAC,‎ ‎∴∠BDO=45°,‎ ‎∴OD=OB=1,‎ ‎∴|m|=1,‎ ‎∴m=±1,‎ ‎∴D1(0,1),D2(0,﹣1);‎ ‎(3)设M(a,a2﹣2a﹣3),N(1,n),‎ ‎①以AB为边,则AB∥MN,AB=MN,如图2,过M作ME⊥对称轴y于E,AF⊥x轴于F,‎ 则△ABF≌△NME,‎ ‎∴NE=AF=3,ME=BF=3,‎ ‎∴|a﹣1|=3,‎ ‎∴a=3或a=﹣2,‎ ‎∴M(4,5)或(﹣2,11);‎ ‎②以AB为对角线,BN=AM,BN∥AM,如图3,‎ 则N在x轴上,M与C重合,‎ ‎∴M(0,﹣3),‎ 综上所述,存在以点A,B,M,N为顶点的四边形是平行四边形,M(4,5)或(﹣2,11)或(0,﹣3).‎ ‎ ‎
查看更多

相关文章

您可能关注的文档