- 2021-04-28 发布 |
- 37.5 KB |
- 8页
文档介绍
高考数学考点归纳之幂函数
高考数学考点归纳之幂函数 一、基础知识 1.幂函数的概念 一般地,形如 y=xα(α∈R)的函数称为幂函数,其中底数 x 是自变量,α为常数. 幂函数的特征 (1)自变量 x 处在幂底数的位置,幂指数α为常数; (2)xα的系数为 1; (3)只有一项. 2.五种常见幂函数的图象与性质 函数特征性 质 y=x y=x2 y=x3 y=x1 2 y=x-1 图象 定义域 R R R {x|x≥0} {x|x≠0} 值域 R {y|y≥0} R {y|y≥0} {y|y≠0} 奇偶性 奇 偶 奇 非奇非偶 奇 单调性 增 (-∞,0)减, (0,+∞)增 增 增 (-∞,0)和 (0,+∞)减 公共点 (1,1) 二、常用结论 对于形如 f(x)=xn m(其中 m∈N*,n∈Z,m 与 n 互质)的幂函数: (1)当 n 为偶数时,f(x)为偶函数,图象关于 y 轴对称; (2)当 m,n 都为奇数时,f(x)为奇函数,图象关于原点对称; (3)当 m 为偶数时,x>0(或 x≥0),f(x)是非奇非偶函数,图象只在第一象限(或第一象限 及原点处). 考点一 幂函数的图象与性质 [典例] (1)(2019·赣州阶段测试)幂函数 y=f(x)的图象经过点(3,3 3),则 f(x)是( ) A.偶函数,且在(0,+∞)上是增函数 B.偶函数,且在(0,+∞)上是减函数 C.奇函数,且在(0,+∞)上是增函数 D.非奇非偶函数,且在(0,+∞)上是减函数 (2)已知幂函数 f(x)=(n2+2n-2)x 2 3-n n (n∈Z)的图象关于 y 轴对称,且在(0,+∞)上是 减函数,则 n 的值为( ) A.-3 B.1 C.2 D.1 或 2 [解析] (1)设 f(x)=xα,将点(3,3 3)代入 f(x)=xα,解得α=1 3 ,所以 f(x)=x 1 3 ,可知函数 f(x)是奇函数,且在(0,+∞)上是增函数,故选 C. (2)∵幂函数 f(x)=(n2+2n-2)x 2 3-n n 在(0,+∞)上是减函数, ∴ n2+2n-2=1, n2-3n<0, ∴n=1, 又 n=1 时,f(x)=x-2 的图象关于 y 轴对称,故 n=1. [答案] (1)C (2)B [解题技法] 幂函数 y=xα的主要性质及解题策略 (1)幂函数在(0,+∞)内都有定义,幂函数的图象都过定点(1,1). (2)当α>0 时,幂函数的图象经过点(1,1)和(0,0),且在(0,+∞)内单调递增;当α<0 时, 幂函数的图象经过点(1,1),且在(0,+∞)内单调递减. (3)当α为奇数时,幂函数为奇函数;当α为偶数时,幂函数为偶函数. (4)幂函数的性质因幂指数大于零、等于零或小于零而不同,解题中要善于根据幂指数 的符号和其他性质确定幂函数的解析式、参数取值等. [题组训练] 1.[口诀第 3、4、5 句]下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的为 ( ) A.y=x-4 B.y=x-1 C.y=x2 D.y=x 1 3 解析:选 A 函数 y=x-4 为偶函数,且在区间(0,+∞)上单调递减;函数 y=x-1 为奇 函数,且在区间(0,+∞)上单调递减;函数 y=x2 为偶函数,且在区间(0,+∞)上单调递增; 函数 y=x 1 3 为奇函数,且在区间(0,+∞)上单调递增. 2.[口诀第 2、3、4 句]已知当 x∈(0,1)时,函数 y=xp 的图象在直线 y=x 的上方,则 p 的取值范围是________. 解析:当 p>0 时,根据题意知 p<1,所以 0b=
1
5
2
3 ,因为 y=
1
2 x 是
减函数,所以 a=
1
2
2
3