四川省南充市中考数学试卷含答案解析

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

四川省南充市中考数学试卷含答案解析

‎81、2018年四川省南充市中考数学试卷 ‎ ‎ 一、选择题(本大题共10个小题,每小题3分,共30分)每小题都有代号为A、B、C、D四个答选项,其中只有一个是正确的。请根据正确选项的代号填涂答题卡对应位置,填涂正确记3分,不涂、错涂或多涂记0分。‎ ‎1.(3分)(2018•南充)下列实数中,最小的数是(  )‎ A.-2 B.0 C.1 D.38‎ ‎2.(3分)(2018•南充)下列图形中,既是轴对称图形又是中心对称图形的是(  )‎ A.扇形 B.正五边形 C.菱形 D.平行四边形 ‎3.(3分)(2018•南充)下列说法正确的是(  )‎ A.调查某班学生的身高情况,适宜采用全面调查 B.篮球队员在罚球线上投篮两次都未投中,这是不可能事件 C.天气预报说明天的降水概率为95%,意味着明天一定下雨 D.小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的概率是1‎ ‎4.(3分)(2018•南充)下列计算正确的是(  )‎ A.﹣a4b÷a2b=﹣a2b B.(a﹣b)2=a2﹣b2‎ C.a2•a3=a6 D.﹣3a2+2a2=﹣a2‎ ‎5.(3分)(2018•南充)如图,BC是⊙O的直径,A是⊙O上的一点,∠OAC=32°,则∠B的度数是(  )‎ A.58° B.60° C.64° D.68°‎ ‎6.(3分)(2018•南充)不等式x+1≥2x﹣1的解集在数轴上表示为(  )‎ A. B. C. D.‎ ‎7.(3分)(2018•南充)直线y=2x向下平移2个单位长度得到的直线是(  )‎ A.y=2(x+2) B.y=2(x﹣2) C.y=2x﹣2 D.y=2x+2‎ ‎8.(3分)(2018•南充)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,D,E,F分别为AB,AC,AD的中点,若BC=2,则EF的长度为(  )‎ A.12 B.1 C.32 D.3‎ ‎9.(3分)(2018•南充)已知1x-1y=3,则代数式2x+3xy-2yx-xy-y的值是(  )‎ A.-72 B.-112 C.92 D.34‎ ‎10.(3分)(2018•南充)如图,正方形ABCD的边长为2,P为CD的中点,连结AP,过点B作BE⊥AP于点E,延长CE交AD于点F,过点C作CH⊥BE于点G,交AB于点H,连接HF.下列结论正确的是(  )‎ A.CE=5 B.EF=22 C.cos∠CEP=55 D.HF2=EF•CF ‎ ‎ 二、填空题(本大题共6个小题,每小题3分,共18分)请将答案填在答题卡对应的横线上。‎ ‎11.(3分)(2018•南充)某地某天的最高气温是6℃,最低气温是﹣4℃,则该地当天的温差为   ℃.‎ ‎12.(3分)(2018•南充)甲、乙两名同学的5次射击训练成绩(单位:环)如下表. ‎ 甲 ‎7‎ ‎8‎ ‎9‎ ‎8‎ ‎8‎ 乙 ‎6‎ ‎10‎ ‎9‎ ‎7‎ ‎8‎ 比较甲、乙这5次射击成绩的方差S甲2,S乙2,结果为:S甲2   S乙2.(选填“>”“=”或“<“)‎ ‎13.(3分)(2018•南充)如图,在△ABC中,AF平分∠BAC,AC的垂直平分线交BC于点E,∠B=70°,∠FAE=19°,则∠C=   度.‎ ‎14.(3分)(2018•南充)若2n(n≠0)是关于x的方程x2﹣2mx+2n=0的根,则m﹣n的值为   .‎ ‎15.(3分)(2018•南充)如图,在△ABC中,DE∥BC,BF平分∠ABC,交DE的延长线于点F.若AD=1,BD=2,BC=4,则EF=   .‎ ‎16.(3分)(2018•南充)如图,抛物线y=ax2+bx+c(a,b,c是常数,a≠0)与x轴交于A,B两点,顶点P(m,n).给出下列结论:‎ ‎①2a+c<0;‎ ‎②若(﹣32,y1),(﹣12,y2),(12,y3)在抛物线上,则y1>y2>y3;‎ ‎③关于x的方程ax2+bx+k=0有实数解,则k>c﹣n;‎ ‎④当n=﹣1a时,△ABP为等腰直角三角形.‎ 其中正确结论是   (填写序号).‎ ‎ ‎ 三、解答题(本大题共9个小题,共72分)解答应写出必要的文字说明,证明过程或演算步骤。‎ ‎17.(6分)(2018•南充)计算:(1-2)2﹣(1﹣22)0+sin45°+(12)﹣1‎ ‎18.(6分)(2018•南充)如图,已知AB=AD,AC=AE,∠BAE=∠DAC.‎ 求证:∠C=∠E.‎ ‎19.(6分)(2018•南充)“每天锻炼一小时,健康生活一辈子”.为了选拔“阳光大课间”领操员,学校组织初中三个年级推选出来的15名领操员进行比赛,成绩如下表:‎ 成绩/分 ‎7‎ ‎8‎ ‎9‎ ‎10‎ 人数/人 ‎2‎ ‎5‎ ‎4‎ ‎4‎ ‎(1)这组数据的众数是   ,中位数是   .‎ ‎(2)已知获得10分的选手中,七、八、九年级分别有1人、2人、1人,学校准备从中随机抽取两人领操,求恰好抽到八年级两名领操员的概率.‎ ‎20.(8分)(2018•南充)已知关于x的一元二次方程x2﹣(2m﹣2)x+(m2﹣2m)=0.‎ ‎(1)求证:方程有两个不相等的实数根.‎ ‎(2)如果方程的两实数根为x1,x2,且x12+x22=10,求m的值.‎ ‎21.(8分)(2018•南充)如图,直线y=kx+b(k≠0)与双曲线y=mx(m≠0)交于点A(﹣12,2),B(n,﹣1).‎ ‎(1)求直线与双曲线的解析式.‎ ‎(2)点P在x轴上,如果S△ABP=3,求点P的坐标.‎ ‎22.(8分)(2018•南充)如图,C是⊙O上一点,点P在直径AB的延长线上,⊙O的半径为3,PB=2,PC=4.‎ ‎(1)求证:PC是⊙O的切线.‎ ‎(2)求tan∠CAB的值.‎ ‎23.(10分)(2018•南充)某销售商准备在南充采购一批丝绸,经调查,用10000元采购A型丝绸的件数与用8000元采购B型丝绸的件数相等,一件A型丝绸进价比一件B型丝绸进价多100元.‎ ‎(1)求一件A型、B型丝绸的进价分别为多少元?‎ ‎(2)若销售商购进A型、B型丝绸共50件,其中A型的件数不大于B型的件数,且不少于16件,设购进A型丝绸m件.‎ ‎①求m的取值范围.‎ ‎②‎ 已知A型的售价是800元/件,销售成本为2n元/件;B型的售价为600元/件,销售成本为n元/件.如果50≤n≤150,求销售这批丝绸的最大利润w(元)与n(元)的函数关系式(每件销售利润=售价﹣进价﹣销售成本).‎ ‎24.(10分)(2018•南充)如图,矩形ABCD中,AC=2AB,将矩形ABCD绕点A旋转得到矩形AB′C′D′,使点B的对应点B'落在AC上,B'C'交AD于点E,在B'C′上取点F,使B'F=AB.‎ ‎(1)求证:AE=C′E.‎ ‎(2)求∠FBB'的度数.‎ ‎(3)已知AB=2,求BF的长.‎ ‎25.(10分)(2018•南充)如图,抛物线顶点P(1,4),与y轴交于点C(0,3),与x轴交于点A,B.‎ ‎(1)求抛物线的解析式.‎ ‎(2)Q是抛物线上除点P外一点,△BCQ与△BCP的面积相等,求点Q的坐标.‎ ‎(3)若M,N为抛物线上两个动点,分别过点M,N作直线BC的垂线段,垂足分别为D,E.是否存在点M,N使四边形MNED为正方形?如果存在,求正方形MNED的边长;如果不存在,请说明理由.‎ ‎ ‎ ‎2018年四川省南充市中考数学试卷 参考答案与试题解析 ‎ ‎ 一、选择题(本大题共10个小题,每小题3分,共30分)每小题都有代号为A、B、C、D四个答选项,其中只有一个是正确的。请根据正确选项的代号填涂答题卡对应位置,填涂正确记3分,不涂、错涂或多涂记0分。‎ ‎1.(3分)(2018•南充)下列实数中,最小的数是(  )‎ A.-2 B.0 C.1 D.38‎ ‎【考点】2A:实数大小比较.‎ ‎【专题】1 :常规题型.‎ ‎【分析】将各项数字按照从小到大顺序排列,找出最小的数即可.‎ ‎【解答】解:根据题意得:﹣2<0<1<38,‎ 则最小的数是﹣2.‎ 故选:A.‎ ‎【点评】此题考查了实数大小比较,正确排列出数字是解本题的关键.‎ ‎ ‎ ‎2.(3分)(2018•南充)下列图形中,既是轴对称图形又是中心对称图形的是(  )‎ A.扇形 B.正五边形 C.菱形 D.平行四边形 ‎【考点】R5:中心对称图形;P3:轴对称图形.‎ ‎【专题】1 :常规题型.‎ ‎【分析】根据轴对称图形与中心对称图形的概念求解.‎ ‎【解答】解:A、扇形,是轴对称图形,不是中心对称图形,故此选项错误;‎ B、正五边形是轴对称图形,不是中心对称图形,故此选项错误;‎ C、菱形既是轴对称图形又是中心对称图形,故此选项正确;‎ D、平行四边形不是轴对称图形,是中心对称图形,故此选项错误.‎ 故选:C.‎ ‎【点评】‎ 本题考查了中心对称图形与轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.‎ ‎ ‎ ‎3.(3分)(2018•南充)下列说法正确的是(  )‎ A.调查某班学生的身高情况,适宜采用全面调查 B.篮球队员在罚球线上投篮两次都未投中,这是不可能事件 C.天气预报说明天的降水概率为95%,意味着明天一定下雨 D.小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的概率是1‎ ‎【考点】X3:概率的意义;V2:全面调查与抽样调查;X1:随机事件.‎ ‎【专题】1 :常规题型;543:概率及其应用.‎ ‎【分析】利用概率的意义以及实际生活常识分析得出即可.‎ ‎【解答】解:A、调查某班学生的身高情况,适宜采用全面调查,此选项正确;‎ B、篮球队员在罚球线上投篮两次都未投中,这是随机事件,此选项错误;‎ C、天气预报说明天的降水概率为95%,意味着明天下雨可能性较大,此选项错误;‎ D、小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的概率是1,此选项错误;‎ 故选:A.‎ ‎【点评】此题主要考查了随机事件的定义和概率的意义,正确把握相关定义是解题关键.‎ ‎ ‎ ‎4.(3分)(2018•南充)下列计算正确的是(  )‎ A.﹣a4b÷a2b=﹣a2b B.(a﹣b)2=a2﹣b2‎ C.a2•a3=a6 D.﹣3a2+2a2=﹣a2‎ ‎【考点】4I:整式的混合运算.‎ ‎【专题】11 :计算题.‎ ‎【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.‎ ‎【解答】解:﹣a4b÷a2b=﹣a2,故选项A错误,‎ ‎(a﹣b)2=a2﹣2ab+b2,故选项B错误,‎ a2•a3=a5,故选项C错误,‎ ‎﹣3a2+2a2=﹣a2,故选项D正确,‎ 故选:D.‎ ‎【点评】本题考查整式的混合运算,解答本题的关键是明确整式混合运算的计算方法.‎ ‎ ‎ ‎5.(3分)(2018•南充)如图,BC是⊙O的直径,A是⊙O上的一点,∠OAC=32°,则∠B的度数是(  )‎ A.58° B.60° C.64° D.68°‎ ‎【考点】M5:圆周角定理.‎ ‎【专题】55:几何图形.‎ ‎【分析】根据半径相等,得出OC=OA,进而得出∠C=32°,利用直径和圆周角定理解答即可.‎ ‎【解答】解:∵OA=OC,‎ ‎∴∠C=∠OAC=32°,‎ ‎∵BC是直径,‎ ‎∴∠B=90°﹣32°=58°,‎ 故选:A.‎ ‎【点评】此题考查了圆周角的性质与等腰三角形的性质.此题比较简单,解题的关键是注意数形结合思想的应用.‎ ‎ ‎ ‎6.(3分)(2018•南充)不等式x+1≥2x﹣1的解集在数轴上表示为(  )‎ A. B. C. D.‎ ‎【考点】C6:解一元一次不等式;C4:在数轴上表示不等式的解集.‎ ‎【专题】11 :计算题;524:一元一次不等式(组)及应用.‎ ‎【分析】根据不等式解集的表示方法,可得答案.‎ ‎【解答】解:移项,得:x﹣2x≥﹣1﹣1,‎ 合并同类项,得:﹣x≥﹣2,‎ 系数化为1,得:x≤2,‎ 将不等式的解集表示在数轴上如下:‎ ‎,‎ 故选:B.‎ ‎【点评】本题考查了在数轴上表示不等式的解集,不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),注意在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.‎ ‎ ‎ ‎7.(3分)(2018•南充)直线y=2x向下平移2个单位长度得到的直线是(  )‎ A.y=2(x+2) B.y=2(x﹣2) C.y=2x﹣2 D.y=2x+2‎ ‎【考点】F9:一次函数图象与几何变换.‎ ‎【专题】53:函数及其图象.‎ ‎【分析】据一次函数图象与几何变换得到直线y=2x向下平移2个单位得到的函数解析式为y=2x﹣2.‎ ‎【解答】解:直线y=2x向下平移2个单位得到的函数解析式为y=2x﹣2.‎ 故选:C.‎ ‎【点评】本题考查了一次函数图象与几何变换:一次函数y=kx(k≠0)的图象为直线,当直线平移时k不变,当向上平移m个单位,则平移后直线的解析式为y=kx+m.‎ ‎ ‎ ‎8.(3分)(2018•南充)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,D,E,F分别为AB,AC,AD的中点,若BC=2,则EF的长度为(  )‎ A.12 B.1 C.32 D.3‎ ‎【考点】KX:三角形中位线定理;KO:含30度角的直角三角形;KP:直角三角形斜边上的中线.‎ ‎【专题】17 :推理填空题.‎ ‎【分析】根据直角三角形的性质得到CD=BD=AD,得到△CBD为等边三角形,根据三角形的中位线定理计算即可.‎ ‎【解答】解:∵∠ACB=90°,D为AB的中点,‎ ‎∴CD=BD=AD,‎ ‎∵∠ACB=90°,∠A=30°,‎ ‎∴∠B=60°,‎ ‎∴△CBD为等边三角形,‎ ‎∴CD=BC=2,‎ ‎∵E,F分别为AC,AD的中点,‎ ‎∴EF=12CD=1,‎ 故选:B.‎ ‎【点评】本题考查的是三角形中位线定理、勾股定理、直角三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.‎ ‎ ‎ ‎9.(3分)(2018•南充)已知1x-1y=3,则代数式2x+3xy-2yx-xy-y的值是(  )‎ A.-72 B.-112 C.92 D.34‎ ‎【考点】6B:分式的加减法;64:分式的值.‎ ‎【专题】11 :计算题;513:分式.‎ ‎【分析】由1x-1y=3得出y-xxy=3,即x﹣y=﹣3xy,整体代入原式=2(x-y)+3xy(x-y)-xy,计算可得.‎ ‎【解答】解:∵1x-1y=3,‎ ‎∴y-xxy=3,‎ ‎∴x﹣y=﹣3xy,‎ 则原式=2(x-y)+3xy(x-y)-xy ‎=-6xy+3xy-3xy-xy ‎=-3xy-4xy ‎=34,‎ 故选:D.‎ ‎【点评】本题主要考查分式的加减法,解题的关键是掌握分式加减运算法则和整体代入思想的运用.‎ ‎ ‎ ‎10.(3分)(2018•南充)如图,正方形ABCD的边长为2,P为CD的中点,连结AP,过点B作BE⊥AP于点E,延长CE交AD于点F,过点C作CH⊥BE于点G,交AB于点H,连接HF.下列结论正确的是(  )‎ A.CE=5 B.EF=22 C.cos∠CEP=55 D.HF2=EF•CF ‎【考点】S9:相似三角形的判定与性质;KD:全等三角形的判定与性质;LE:正方形的性质;T7:解直角三角形.‎ ‎【专题】556:矩形 菱形 正方形.‎ ‎【分析】首先证明BH=AH,推出EG=BG,推出CE=CB,再证明△CEH≌△CBH,Rt△HFE≌Rt ‎△HFA,利用全等三角形的性质即可一一判断.‎ ‎【解答】解:连接EH.‎ ‎∵四边形ABCD是正方形,‎ ‎∴CD=AB═BC=AD=2,CD∥AB,‎ ‎∵BE⊥AP,CH⊥BE,‎ ‎∴CH∥PA,‎ ‎∴四边形CPAH是平行四边形,‎ ‎∴CP=AH,‎ ‎∵CP=PD=1,‎ ‎∴AH=PC=1,‎ ‎∴AH=BH,‎ 在Rt△ABE中,∵AH=HB,‎ ‎∴EH=HB,∵HC⊥BE,‎ ‎∴BG=EG,‎ ‎∴CB=CE=2,故选项A错误,‎ ‎∵CH=CH,CB=CE,HB=HE,‎ ‎∴△ABC≌△CEH,‎ ‎∴∠CBH=∠CEH=90°,‎ ‎∵HF=HF,HE=HA,‎ ‎∴Rt△HFE≌Rt△HFA,‎ ‎∴AF=EF,设EF=AF=x,‎ 在Rt△CDF中,有22+(2﹣x)2=(2+x)2,‎ ‎∴x=12,‎ ‎∴EF=12,故B错误,‎ ‎∵PA∥CH,‎ ‎∴∠CEP=∠ECH=∠BCH,‎ ‎∴cos∠CEP=cos∠BCH=BCCH=255,故C错误.‎ ‎∵HF=52,EF=12,FC=52‎ ‎∴HF2=EF•FC,故D正确,‎ 故选:D.‎ ‎【点评】本题考查正方形的性质、全等三角形的判定和性质、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题.‎ ‎ ‎ 二、填空题(本大题共6个小题,每小题3分,共18分)请将答案填在答题卡对应的横线上。‎ ‎11.(3分)(2018•南充)某地某天的最高气温是6℃,最低气温是﹣4℃,则该地当天的温差为 10 ℃.‎ ‎【考点】1A:有理数的减法.‎ ‎【专题】11 :计算题.‎ ‎【分析】用最高温度减去最低温度,再根据减去一个数等于加上这个数的相反数进行计算即可得解.‎ ‎【解答】解:6﹣(﹣4),‎ ‎=6+4,‎ ‎=10℃.‎ 故答案为:10‎ ‎【点评】本题考查了有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键.‎ ‎ ‎ ‎12.(3分)(2018•南充)甲、乙两名同学的5次射击训练成绩(单位:环)如下表. ‎ 甲 ‎7‎ ‎8‎ ‎9‎ ‎8‎ ‎8‎ 乙 ‎6‎ ‎10‎ ‎9‎ ‎7‎ ‎8‎ 比较甲、乙这5次射击成绩的方差S甲2,S乙2,结果为:S甲2 < S乙2.(选填“>”“=”或“<“)‎ ‎【考点】W7:方差.‎ ‎【专题】1 :常规题型.‎ ‎【分析】首先求出各组数据的平均数,再利用方差公式计算得出答案.‎ ‎【解答】解:‎
查看更多

相关文章

您可能关注的文档