- 2021-04-23 发布 |
- 37.5 KB |
- 6页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
数列极限数学归纳法高考名题选萃
数列、极限、数学归纳法·高考名题选萃 一、选择题 1.在各项均为正数的等比数列{an}中,若a5a6=9,则log3a1+log3a2+…+log3a10= [ ] A.12 B.10 C.8 D.2+log35 2.已知a1,a1,a2,…an为各项都大于零的等比数列,公比q≠1,则 [ ] A.a1+a8>a4+a5 B.a1+a8<a4+a5 C.a1+a8=a4+a5 D.a1+a8与a4+a5的大小关系不能由已知条件确定 3.某种细菌在培养过程中,每20分钟分裂一次(一个分裂为二个),经过3小时,这种细菌由1个可以繁殖成 [ ] A.511个 B.512个 C.1023个 D.1024个 4.某个命题与自然数n有关,若n=k(k∈N)时该命题成立,那么推得当n=k+1时该命题也成立,现已知当n=5时该命题不成立,那么可推得 [ ] A.当n=6时该命题不成立 B.当n=6时该命题成立 C.当n=4时该命题不成立 D.当n=4时该命题成立 5.等差数列{an}的前m项和为30,前2m项和为100,则它的前3m项和为 [ ] A.130 B.170 C.210 D.260 [ ] [ ] a1的取值范围是 [ ] A.(1,+∞) B.(1,4) 二、填空题 (n=1,2,3,…),则它的通项公式是an=________. 11.已知等差数列{an}的公差d≠0,且a1,a3,a9成等比数列, 14.已知等比数列{an}(an∈R),a1+a2=9,a1a2a3=27,且Sn=a1 16.在数列{an}和{bn}中,a1=2,且对任意自然数n,3an+1-an=0,bn是an与an+1的等差中项,则{bn}的各项和是________. 17.在等差数列{an}中,满足3a4=7a7,且a1>0,Sn是数列{an}前n项的和.若Sn取得最大值,则n=________. 三、解答题 18.(1)已知数列{cn},其中cn=2n+3n,且数列{cn+1-pcn} 为等比数列,求常数p; (2)设{an}、{bn}是公比不相等的两个等比数列,cn=an+bn,证明数列{cn}不是等比数列. 19.是否存在常数a,b,c使1·22+2·32+…+n(n+1)2= 果,推测出计算Sn的公式,并用数学归纳法加以证明. 21.设{an}是正数组成的数列,其前n项的和为Sn,并且对于所有的自然数n,an与2的等差中项等于Sn与2的等比中项.(1)写出数列{an} 22.设{an}是由正数组成的等比数列,Sn是其前n项的和.(1)证明 23.已知数列{an},{bn}都是由正数组成的等比数列,公比分别为p,q,其中p>q,且P≠1,q≠1,设cn=an+bn,Sn为数列{cn} 24.设数列{an}的首项a1=1,前n项和Sn满足关系式: 3tSn-(2t+3)Sn-1=3t(t>0,n=2,3,4,…). (1)求证:数列{an}是等比数列; (n=2,3,4,…),求bn; (3)求和:b1b2-b2b3+b3b4-…+b2n-1b2n-b2nb2n+1. 25.已知数列{bn}是等差数列,b1=1,b1+b2+…+b10=145. (1)求数列{bn}的通项bn; 并证明你的结论. 参考答案提示 一、选择题 1.B 2.A 3.B 4.C 5.C 6.B 7.D 8.D 二、填空题 则n≤9.当n≤9时an>0. 同理可得当n≥10时an<0,所以n=9时Sn取得最大值 三、解答题 18.本小题主要考查等比数列的概念和基本性质,推理和运算能力. 解 (1)因为{cn+1-pcn}是等比数列,故有 (cn+1-pcn)2=(cn+2-pcn+1)(cn-pcn-1), 将cn=2n+3n代入上式,得 [2n+1+3n+1-p(2n+3n)]2 =[2n+2+3n+2-p(2n+1+3n+1)]·[2n+3n-p(2n-1+3n-1)], 即[(2-p)2n+(3-p)3n]2 =[(2-p)2n+1+(3-p)3n+1][(2-p)2n-1+(3-p)3n-1], 解得p=2或p=3. (2)设{an}、{bn}的公比分别为p、q,p≠q,cn=an+bn. 由于p≠q,p2+q2>2pq,又a1、b1不为零, 19.a=8,b=11,c=10 21.(1)该数列的前3项为2,6,10. (2)an=4n-2. 22.(2)不存在 (3)b1b2-b2b3+b3b4-…+b2n-1b2n-b2nb2n+1 25.(1)bn=3n-2.查看更多