- 2021-04-22 发布 |
- 37.5 KB |
- 16页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
【数学】2020届一轮复习人教A版第四章第6节正弦定理和余弦定理学案
第6节 正弦定理和余弦定理 最新考纲 掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题. 知 识 梳 理 1.正、余弦定理 在△ABC中,若角A,B,C所对的边分别是a,b,c,R为△ABC外接圆半径,则 定理 正弦定理 余弦定理 公式 ===2R a2=b2+c2-2bccos__A;b2=c2+a2-2cacos__B; c2=a2+b2-2abcos__C 常见 变形 (1)a=2Rsin A,b=2Rsin__B,c=2Rsin__C; (2)sin A=,sin B=,sin C=; (3)a∶b∶c=sin__A∶sin__B∶sin__C; (4)asin B=bsin A,bsin C=csin B,asin C=csin A cos A=; cos B=; cos C= 2.S△ABC=absin C=bcsin A=acsin B==(a+b+c)·r(r是三角形内切圆的半径),并可由此计算R,r. 3.在△ABC中,已知a,b和A时,解的情况如下: A为锐角 A为钝角或直角 图形 关系式 a=bsin A bsin Ab a≤b 解的个数 一解 两解 一解 一解 无解 [微点提醒] 1.三角形中的三角函数关系 (1)sin(A+B)=sin C;(2)cos(A+B)=-cos C; (3)sin=cos;(4)cos=sin. 2.三角形中的射影定理 在△ABC中,a=bcos C+ccos B;b=acos C+ccos A;c=bcos A+acos B. 3.在△ABC中,两边之和大于第三边,两边之差小于第三边,A>B⇔a>b⇔sin A> sin B⇔cos A查看更多
相关文章
- 当前文档收益归属上传用户
- 下载本文档