【数学】2019届一轮复习北师大版不等式选讲学案(1)

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

【数学】2019届一轮复习北师大版不等式选讲学案(1)

选修4-5 不等式选讲 第一节绝对值不等式 ‎1.绝对值三角不等式 定理1 如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立.‎ 定理2 如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.‎ ‎2.绝对值不等式的解法 ‎(1)含绝对值不等式|x|a的解法 ‎ 不等式 a>0‎ a=0‎ a<0‎ ‎|x|a ‎(2)|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法 ‎ ‎①|ax+b|≤c⇔-c≤ax+b≤c;‎ ‎②|ax+b|≥c⇔ax+b≥c或ax+b≤-c.‎ ‎1.设a,b为满足ab<0的实数,那么(  )‎ A.|a+b|>|a-b|     B.|a+b|<|a-b|‎ C.|a-b|<||a|-|b|| D.|a-b|<|a|+|b|‎ 解析 选B ∵ab<0,‎ ‎∴|a-b|=|a|+|b|>|a+b|.‎ ‎2.若不等式| x-4|≤2的解集为,则实数 =________.‎ 解析 由| x-4|≤2⇔2≤ x≤6.‎ ‎∵不等式的解集为,∴ =2.‎ 答案 2‎ ‎3.函数y=|x-4|+|x+4|的最小值为________.‎ 解析 因为|x-4|+|x+4|≥|(x-4)-(x+4)|=8,‎ 所以所求函数的最小值为8.‎ 答案 8‎ ‎4.不等式|x+1|-|x-2|≥1的解集是________.‎ 解析 令f(x)=|x+1|-|x-2|= 当-11恒成立.‎ 所以不等式的解集为.‎ 答案      ‎[考什么·怎么考]‎ 绝对值不等式的解法是每年高考的重点,既单独考查,也与函数的图象、含参问题等的综合考查,难度较小,属于低档题.‎ ‎1.(2016·全国卷Ⅰ)已知函数f(x)=|x+1|-|2x-3|.‎ ‎(1)画出y=f(x)的图象;‎ ‎(2)求不等式|f(x)|>1的解集.‎ 解 (1)由题意得f(x)= 故y=f(x)的图象如图所示.‎ ‎(2)由f(x)的函数表达式及图象可知,‎ 当f(x)=1时,可得x=1或x=3;‎ 当f(x)=-1时,可得x=或x=5.‎ 故f(x)>1的解集为{x|11的解集为.‎ ‎2.解下列不等式.‎ ‎(1)|2x+1|-2|x-1|>0;‎ ‎(2)|x+3|-|2x-1|<+1.‎ 解 (1)法一 原不等式可化为|2x+1|>2|x-1|,‎ 两边平方得4x2+4x+1>4(x2-2x+1),‎ 解得x>,‎ 所以原不等式的解集为.‎ 法二 原不等式等价于 或或 解得x>,所以原不等式的解集为.‎ ‎(2)①当x<-3时,‎ 原不等式化为-(x+3)-(1-2x)<+1,‎ 解得x<10,∴x<-3.‎ ‎②当-3≤x≤时,‎ 原不等式化为(x+3)-(1-2x)<+1,‎ 解得x<-,∴-3≤x<-.‎ ‎③当x>时,‎ 原不等式化为(x+3)+(1-2x)<+1,‎ 解得x>2,∴x>2.‎ 综上可知,原不等式的解集为.‎ ‎[怎样快解·准解]‎ 绝对值不等式的常见3解法 ‎(1)零点分段讨论法 含有两个或两个以上绝对值符号的不等式,可用零点分段讨论法脱去绝对值符号,将其转化为与之等价的不含绝对值符号的不等式(组),一般步骤如下 ‎ ‎①令每个绝对值符号里的代数式为零,并求出相应的根;‎ ‎②将这些根按从小到大排序,它们把实数集分为若干个区间;‎ ‎③在所分的各区间上,根据绝对值的定义去掉绝对值符号,求所得的各不等式在相应区间上的解集;‎ ‎④这些解集的并集就是原不等式的解集.‎ ‎(2)利用绝对值的几何意义 由于|x-a|+|x-b|与|x-a|-|x-b|分别表示数轴上与x对应的点到与a,b对应的点的距离之和与距离之差,因此对形如|x-a|+|x-b|0)或|x-a|-|x-b|>c(c>0)的不等式,利用绝对值的几何意义求解更直观.‎ ‎(3)数形结合法 在直角坐标系中作出不等式两边所对应的两个函数的图象,利用函数图象求解.‎ ‎[易错提醒] 用零点分段法和几何意义求解绝对值不等式时,去绝对值符号的关键点是找零点,将数轴分成若干段,然后从左到右逐段讨论.‎      ‎[典题领悟]‎ ‎1.若对于实数x,y有|1-x|≤2,|y+1|≤1,求|2x+3y+1|的最大值.‎ 解 因为|2x+3y+1|=|2(x-1)+3(y+1)|‎ ‎≤2|x-1|+3|y+1|≤7,‎ 所以|2x+3y+1|的最大值为7.‎ ‎2.若a≥2,x∈R,求证 |x-1+a|+|x-a|≥3.‎ 证明 因为|x-1+a|+|x-a|‎ ‎≥|(x-1+a)-(x-a)|=|‎2a-1|,‎ 又a≥2,故|‎2a-1|≥3,‎ 所以|x-1+a|+|x-a|≥3成立.‎ ‎[解题师说]‎ 证明绝对值不等式的3种主要方法 ‎(1)利用绝对值的定义去掉绝对值符号,转化为一般不等式再证明.‎ ‎(2)利用三角不等式||a|-|b||≤|a±b|≤|a|+|b|进行证明.‎ ‎(3)转化为函数问题,利用数形结合进行证明.‎ ‎[冲关演练]‎ 已知x,y∈R,且|x+y|≤,|x-y|≤,求证 |x+5y|≤1.‎ 证明 ∵|x+5y|=|3(x+y)-2(x-y)|.‎ ‎∴由绝对值不等式的性质,得 ‎|x+5y|=|3(x+y)-2(x-y)|≤|3(x+y)|+|2(x-y)|‎ ‎=3|x+y|+2|x-y|≤3×+2×=1.‎ 即|x+5y|≤1成立.‎      绝对值不等式的综合应用是每年高考的热点,主要涉及绝对值不等式的解法、恒成立问题,难度适中,属于中档题.‎ ‎[典题领悟]‎ ‎(2017·全国卷Ⅲ)已知函数f(x)=|x+1|-|x-2|.‎ ‎(1)求不等式f(x)≥1的解集;‎ ‎(2)若不等式f(x)≥x2-x+m的解集非空,求m的取值范围.‎ 解 (1)f(x)= 当x<-1时,f(x)≥1无解;‎ 当-1≤x≤2时,由f(x)≥1,得2x-1≥1,解得1≤x≤2;‎ 当x>2时,由f(x)≥1,解得x>2.‎ 所以f(x)≥1的解集为{x|x≥1}.‎ ‎(2)由f(x)≥x2-x+m,得m≤|x+1|-|x-2|-x2+x.‎ 而|x+1|-|x-2|-x2+x≤|x|+1+|x|-2-x2+|x|=-2+≤,‎ 当且仅当x=时,|x+1|-|x-2|-x2+x=.‎ 故m的取值范围为.‎ ‎[解题师说]‎ 设函数f(x)中含有绝对值,则 ‎(1)f(x)>a有解⇔f(x)max>a.‎ ‎(2)f(x)>a恒成立⇔f(x)min>a.‎ ‎(3)f(x)>a恰在(c,b)上成立⇔c,b是方程f(x)=a的解.‎ ‎[冲关演练]‎ ‎1.(2017·全国卷Ⅰ)已知函数f(x)=-x2+ax+4,g(x)=|x+1|+|x-1|.‎ ‎(1)当a=1时,求不等式f(x)≥g(x)的解集;‎ ‎(2)若不等式f(x)≥g(x)的解集包含[-1,1],求a的取值范围.‎ 解 (1)当a=1时,不等式f(x)≥g(x)等价于 x2-x+|x+1|+|x-1|-4≤0. ①‎ 当x<-1时,①式化为x2-3x-4≤0,无解;‎ 当-1≤x≤1时,①式化为x2-x-2≤0,从而-1≤x≤1;‎ 当x>1时,①式化为x2+x-4≤0,‎ 从而1<x≤.‎ 所以f(x)≥g(x)的解集为.‎ ‎(2)当x∈[-1,1]时,g(x)=2.‎ 所以f(x)≥g(x)的解集包含[-1,1],等价于当x∈[-1,1]时,f(x)≥2.‎ 又f(x)在[-1,1]的最小值必为f(-1)与f(1)之一,‎ 所以f(-1)≥2且f(1)≥2,得-1≤a≤1.‎ 所以a的取值范围为[-1,1].‎ ‎2.已知函数f(x)=|2x-a|+a.‎ ‎(1)当a=2时,求不等式f(x)≤6的解集;‎ ‎(2)设函数g(x)=|2x-1|.当x∈R时,f(x)+g(x)≥3,求a的取值范围.‎ 解 (1)当a=2时,f(x)=|2x-2|+2.‎ 解不等式|2x-2|+2≤6,得-1≤x≤3.‎ 因此f(x)≤6的解集为{x|-1≤x≤3}.‎ ‎(2)当x∈R时,f(x)+g(x)=|2x-a|+a+|1-2x|≥3,‎ 即+≥.‎ 又min=,‎ 所以≥,解得a≥2.‎ 所以a的取值范围是[2,+∞).‎ ‎1.已知函数f(x)=|x-4|+|x-a|(a∈R)的最小值为a.‎ ‎(1)求实数a的值;‎ ‎(2)解不等式f(x)≤5.‎ 解 (1)f(x)=|x-4|+|x-a|≥|a-4|=a,‎ 从而解得a=2.‎ ‎(2)由(1)知,f(x)=|x-4|+|x-2|= 故当x≤2时,由-2x+6≤5,得≤x≤2,‎ 当24时,由2x-6≤5,得40,b>0,函数f(x)=|x+a|+|2x-b|的最小值为1.‎ ‎(1)证明 ‎2a+b=2;‎ ‎(2)若a+2b≥tab恒成立,求实数t的最大值.‎ 解 (1)证明 因为-a<,所以f(x)=|x+a|+|2x-b|=显然f(x)在上单调递减,在上单调递增,所以f(x)的最小值为f=a+,所以a+=1,即‎2a+b=2.‎ ‎(2)因为a+2b≥tab恒成立,所以≥t恒成立,‎ =+=(‎2a+b)‎ ‎=≥=.‎ 当且仅当a=b=时,取得最小值,‎ 所以t≤,即实数t的最大值为.‎ ‎7.已知函数f(x)=|x+1|-2|x-a|,a>0.‎ ‎(1)当a=1时,求不等式f(x)>1的解集;‎ ‎(2)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.‎ 解 (1)当a=1时,‎ f(x)>1化为|x+1|-2|x-1|-1>0.‎ 当x≤-1时,不等式化为x-4>0,无解;‎ 当-10,‎ 解得0,解得1≤x<2.‎ 所以f(x)>1的解集为.‎ ‎(2)由题设可得f(x)= 所以函数f(x)的图象与x轴围成的三角形的三个顶点分别为A,B(‎2a+1,0),C(a,a+1),‎ 所以△ABC的面积为(a+1)2.‎ 由题设得(a+1)2>6,故a>2.‎ 所以a的取值范围为(2,+∞).‎ ‎8.已知函数f(x)=|3x+2|.‎ ‎(1)解不等式f(x)<4-|x-1|;‎ ‎(2)已知m+n=1(m,n>0),若|x-a|-f(x)≤+(a>0)恒成立,求实数a的取值范围.‎ 解 (1)不等式f(x)<4-|x-1|,‎ 即|3x+2|+|x-1|<4.‎ 当x<-时,不等式化为-3x-2-x+1<4,‎ 解得-1时,不等式化为3x+2+x-1<4,无解.‎ 综上所述,原不等式的解集为.‎ ‎(2)+=(m+n)=1+1++≥4,‎ 当且仅当m=n=时等号成立.‎ 令g(x)=|x-a|-f(x)=|x-a|-|3x+2|=‎ ‎∴x=-时,g(x)max=+a,‎ 要使不等式恒成立,只需g(x)max=+a≤4,‎ 解得00,b>0时,aabb≥(ab).‎ 证明 ∵=,‎ ‎∴当a=b时,=1,‎ 当a>b>0时,>1,>0,‎ ‎∴>1,‎ 当b>a>0时,0<<1,<0,‎ ‎∴>1,‎ ‎∴aabb≥(ab).‎      ‎[典题领悟]‎ ‎(2017·全国卷Ⅱ)已知a>0,b>0,a3+b3=2.证明 ‎ ‎(1)(a+b)(a5+b5)≥4;‎ ‎(2)a+b≤2.‎ 证明 (1)(1)(a+b)(a5+b5)=a6+ab5+a5b+b6‎ ‎=(a3+b3)2-‎2a3b3+ab(a4+b4)‎ ‎=4+ab(a2-b2)2≥4.‎ ‎(2)∵(a+b)3=a3+‎3a2b+3ab2+b3‎ ‎=2+3ab(a+b)≤2+(a+b)‎ ‎=2+,‎ ‎∴(a+b)3≤8,因此a+b≤2.‎ ‎[解题师说]‎ ‎1.综合法证明不等式的方法 ‎(1)综合法证明不等式,要着力分析已知与求证之间,不等式的左右两端之间的差异与联系.合理进行转换,恰当选择已知不等式,这是证明的关键;‎ ‎(2)在用综合法证明不等式时,不等式的性质和基本不等式是最常用的.在运用这些性质时,要注意性质成立的前提条件.‎ ‎2.综合法证明时常用的不等式 ‎(1)a2≥0.‎ ‎(2)|a|≥0.‎ ‎(3)a2+b2≥2ab,它的变形形式有 a2+b2≥2|ab|;a2+b2≥-2ab;(a+b)2≥4ab;‎ a2+b2≥(a+b)2;≥2.‎ ‎(4)≥,它的变形形式有 a+≥2(a>0);+≥2(ab>0);‎ +≤-2(ab<0).‎ ‎(5)(a2+b2)(c2+d2)≥(ac+bd)2.‎ ‎[冲关演练]‎ ‎1.已知a>0,b>0,a+b=1,求证 ‎ ‎(1)++≥8;‎ ‎(2)≥9.‎ 证明 (1)∵a+b=1,a>0,b>0,‎ ‎∴++ ‎=++ ‎=2 ‎=2 ‎=2+4‎ ‎≥4 +4=8,当且仅当a=b=时,等号成立,‎ ‎∴++≥8.‎ ‎(2)∵=+++1,‎ 由(1)知++≥8.‎ ‎∴≥9.‎ ‎2.已知函数f(x)=2|x+1|+|x-2|.‎ ‎(1)求f(x)的最小值m;‎ ‎(2)若a,b,c均为正实数,且满足a+b+c=m,求证 ++≥3.‎ 解 (1)当x<-1时,f(x)=-2(x+1)-(x-2)=-3x∈(3,+∞);‎ 当-1≤x<2时,f(x)=2(x+1)-(x-2)=x+4∈[3,6);‎ 当x≥2时,f(x)=2(x+1)+(x-2)=3x∈[6,+∞).‎ 综上,f(x)的最小值m=3.‎ ‎(2)证明 因为a,b,c均为正实数,且满足a+b+c=3,‎ 所以+++(a+b+c)‎ ‎=++ ‎≥2=2(a+b+c),‎ 当且仅当a=b=c=1时,取“=”,‎ 所以++≥a+b+c,即++≥3.‎      ‎[典题领悟]‎ 已知函数f(x)=|x+1|.‎ ‎(1)求不等式f(x)<|2x+1|-1的解集M;‎ ‎(2)设a,b∈M,证明 f(ab)>f(a)-f(-b).‎ 解 (1)由题意,|x+1|<|2x+1|-1,‎ ‎①当x≤-1时,‎ 不等式可化为-x-1<-2x-2,‎ 解得x<-1;‎ ‎②当-1<x<-时,‎ 不等式可化为x+1<-2x-2,‎ 此时不等式无解;‎ ‎③当x≥-时,‎ 不等式可化为x+1<2x,解得x>1.‎ 综上,M={x|x<-1或x>1}.‎ ‎(2)证明 因为f(a)-f(-b)=|a+1|-|-b+1|≤|a+1-(-b+1)|=|a+b|,‎ 所以要证f(ab)>f(a)-f(-b),‎ 只需证|ab+1|>|a+b|,‎ 即证|ab+1|2>|a+b|2,‎ 即证a2b2+2ab+1>a2+2ab+b2,‎ 即证a2b2-a2-b2+1>0,‎ 即证(a2-1)(b2-1)>0.‎ 因为a,b∈M,所以a2>1,b2>1,‎ 所以(a2-1)(b2-1)>0成立,所以原不等式成立.‎ ‎[解题师说]‎ ‎1.分析法的应用条件 当所证明的不等式不能使用比较法,且和重要不等式(a2+b2≥2ab)、基本不等式没有直接联系,较难发现条件和结论之间的关系时,可用分析法来寻找证明途径,使用分析法证明的关键是推理的每一步必须可逆.‎ ‎2.用分析法证“若A则B”这个命题的模式 为了证明命题B为真,‎ 只需证明命题B1为真,从而有…‎ 只需证明命题B2为真,从而有…‎ ‎……‎ 只需证明命题A为真,而已知A为真,故B必真.‎ ‎[冲关演练]‎ 已知a>0,b>0,‎2c>a+b,求证 c-0,所以只要证a-‎2c<-b,‎ 即证a+b<‎2c.‎ 由已知条件知,上式显然成立,所以原不等式成立.‎ ‎1.设a,b,c∈R+,且a+b+c=1.‎ ‎(1)求证 2ab+bc+ca+≤;‎ ‎(2)求证 ++≥2.‎ 证明 (1)因为1=(a+b+c)2=a2+b2+c2+2ab+2bc+2ca≥4ab+2bc+2ca+c2,‎ 所以2ab+bc+ca+=(4ab+2bc+2ca+c2)≤.‎ ‎(2)因为≥,≥,≥,‎ 所以++≥++=a+b+c≥‎2a+2b+‎2c=2.‎ ‎2.若a>0,b>0,且+=.‎ ‎(1)求a3+b3的最小值;‎ ‎(2)是否存在a,b,使得‎2a+3b=6?并说明理由.‎ 解 (1)由=+≥,‎ 得ab≥2,且当a=b=时等号成立.‎ 故a3+b3≥2≥4,且当a=b=时等号成立.‎ 所以a3+b3的最小值为4.‎ ‎(2)由(1)知,‎2a+3b≥2≥4.‎ 由于4>6,从而不存在a,b,使得‎2a+3b=6.‎ ‎3.设a,b,c,d均为正数,且a+b=c+d,求证 ‎ ‎(1)若ab>cd,则+>+;‎ ‎(2)+>+是|a-b|<|c-d|的充要条件.‎ 证明 (1)因为(+)2=a+b+2,‎ ‎(+)2=c+d+2,‎ 由题设a+b=c+d,ab>cd,‎ 得(+)2>(+)2.‎ 因此+>+.‎ ‎(2)①必要性 若|a-b|<|c-d|,‎ 则(a-b)2<(c-d)2,‎ 即(a+b)2-4ab<(c+d)2-4cd.‎ 因为a+b=c+d,所以ab>cd.‎ 由(1),得+>+.‎ ‎②充分性 若+>+,‎ 则(+)2>(+)2,‎ 即a+b+2>c+d+2.‎ 因为a+b=c+d,所以ab>cd.‎ 于是(a-b)2=(a+b)2-4ab<(c+d)2-4cd=(c-d)2.‎ 因此|a-b|<|c-d|.‎ 综上,+>+是|a-b|<|c-d|的充要条件.‎ ‎4.已知定义在R上的函数f(x)=|x+1|+|x-2|的最小值为a.‎ ‎(1)求a的值;‎ ‎(2)若p,q,r是正实数,且满足p+q+r=a,求证 p2+q2+r2≥3.‎ 解 (1)因为|x+1|+|x-2|≥|(x+1)-(x-2)|=3,‎ 当且仅当-1≤x≤2时,等号成立,‎ 所以f(x)的最小值等于3,即a=3.‎ ‎(2)证明 由(1)知p+q+r=3,‎ 又因为p,q,r是正实数,‎ 所以(p2+q2+r2)(12+12+12)≥(p×1+q×1+r×1)2=(p+q+r)2=9,即p2+q2+r2≥3.‎ ‎5.已知函数f(x)=|x-1|.‎ ‎(1)解不等式f(2x)+f(x+4)≥8;‎ ‎(2)若|a|<1,|b|<1,a≠0,求证 >f.‎ 解 (1)f(2x)+f(x+4)=|2x-1|+|x+3|‎ ‎= 当x<-3时,由-3x-2≥8,解得x≤-;‎ 当-3≤x<时,-x+4≥8无解;‎ 当x≥时,由3x+2≥8,解得x≥2.‎ 所以不等式f(2x)+f(x+4)≥8的解集为 .‎ ‎(2)证明 >f等价于f(ab)>|a|f,‎ 即|ab-1|>|a-b|.‎ 因为|a|<1,|b|<1,‎ 所以|ab-1|2-|a-b|2‎ ‎=(a2b2-2ab+1)-(a2-2ab+b2)‎ ‎=(a2-1)(b2-1)>0,‎ 所以|ab-1|>|a-b|.‎ 故所证不等式成立.‎ ‎6.(2018·武昌调研)设函数f(x)=|x-2|+2x-3,记f(x)≤-1的解集为M.‎ ‎(1)求M;‎ ‎(2)当x∈M时,证明 x[f(x)]2-x‎2f(x)≤0.‎ 解 (1)由已知,得f(x)= 当x≤2时,由f(x)=x-1≤-1,‎ 解得x≤0,此时x≤0;‎ 当x>2时,由f(x)=3x-5≤-1,‎ 解得x≤,显然不成立.‎ 故f(x)≤-1的解集为M={x|x≤0}.‎ ‎(2)证明 当x∈M时,f(x)=x-1,‎ 于是x[f(x)]2-x‎2f(x)‎ ‎=x(x-1)2-x2(x-1)‎ ‎=-x2+x ‎=-2+.‎ 令g(x)=-2+,‎ 则函数g(x)在(-∞,0]上是增函数,‎ ‎∴g(x)≤g(0)=0.‎ 故x[f(x)]2-x‎2f(x)≤0.‎ ‎7.已知a,b都是正实数,且a+b=2,求证 +≥1.‎ 证明 ∵a>0,b>0,a+b=2,‎ ‎∴+-1= ‎= ‎= ‎===.‎ ‎∵a+b=2≥2,∴ab≤1.‎ ‎∴≥0.‎ ‎∴+≥1.‎ ‎8.设函数f(x)=x-|x+2|-|x-3|-m,若∀x∈R,-4≥f(x)恒成立.‎ ‎(1)求实数m的取值范围;‎ ‎(2)求证 log(m+1)(m+2)>log(m+2)(m+3).‎ 解 (1)∵∀x∈R,-4≥f(x)恒成立,‎ ‎∴m+≥x-|x+2|-|x-3|+4恒成立.‎ 令g(x)=x-|x+2|-|x-3|+4= ‎∴函数g(x)在(-∞,3]上是增函数,在(3,+∞)上是减函数,‎ ‎∴g(x)max=g(3)=2,‎ ‎∴m+≥g(x)max=2,‎ 即m+-2≥0⇒=≥0,‎ ‎∴m>0,‎ 综上,实数m的取值范围是(0,+∞).‎ ‎(2)证明 由m>0,知m+3>m+2>m+1>1,‎ 即lg(m+3)>lg(m+2)>lg(m+1)>lg 1=0.‎ ‎∴要证log(m+1)(m+2)>log(m+2)(m+3).‎ 只需证>,‎ 即证lg(m+1)·lg(m+3)log(m+2)(m+3)成立.‎
查看更多

相关文章

您可能关注的文档