- 2021-04-15 发布 |
- 37.5 KB |
- 24页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
全国高考理科数学
绝密★启用前 2017全国1理科数学 试卷副标题 考试范围:xxx;考试时间:100分钟;命题人:xxx 题号 一 二 三 总分 得分 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 第I卷(选择题) 请点击修改第I卷的文字说明 评卷人 得分 一、选择题 1.已知集合A={x|x<1},B={x|},则 A. B. C. D. 【答案】A 【解析】由可得,则,即,所以 , ,故选A. 点睛:集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理. 2.如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是 A. B. C. D. 【答案】B 【解析】设正方形边长为,则圆的半径为,正方形的面积为,圆的面积为.由图形的对称性可知,太极图中黑白部分面积相等,即各占圆面积的一半.由几何概型概率的计算公式得,此点取自黑色部分的概率是,选B. 点睛:对于几何概型的计算,首先确定事件类型为几何概型并确定其几何区域(长度、面积、体积或时间),其次计算基本事件区域的几何度量和事件A区域的几何度量,最后计算. 3.设有下面四个命题 :若复数满足,则; :若复数满足,则; :若复数满足,则; :若复数,则. 其中的真命题为 A. B. C. D. 【答案】B 【解析】令,则由得,所以,故正确; 当时,因为,而知,故不正确; 当时,满足,但,故不正确; 对于,因为实数的共轭复数是它本身,也属于实数,故正确,故选B. 点睛:分式形式的复数,分子、分母同乘以分母的共轭复数,化简成的形式进行判断,共轭复数只需实部不变,虚部变为原来的相反数即可. 4.记为等差数列的前项和.若, ,则的公差为 A. 1 B. 2 C. 4 D. 8 【答案】C 【解析】设公差为, , ,联立解得,故选C. 点睛:求解等差数列基本量问题时,要多多使用等差数列的性质,如为等差数列,若,则. 5.函数在单调递减,且为奇函数.若,则满足的的取值范围是 A. B. C. D. 【答案】D 【解析】因为为奇函数且在单调递减,要使成立,则满足,从而由得,即满足成立的的取值范围为,选D. 点睛:奇偶性与单调性的综合问题,要充分利用奇、偶函数的性质与单调性解决不等式和比较大小问题,若在R上为单调递增的奇函数,且,则,反之亦成立. 6.展开式中的系数为 A. 15 B. 20 C. 30 D. 35 【答案】C 【解析】因为,则展开式中含的项为, 展开式中含的项为,故的系数为,选C. 点睛:对于两个二项式乘积的问题,用第一个二项式中的每项乘以第二个二项式的每项,分析含的项共有几项,进行相加即可.这类问题的易错点主要是未能分析清楚构成这一项的具体情况,尤其是两个二项展开式中的不同. 7.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为 A. 10 B. 12 C. 14 D. 16 【答案】B 【解析】由题意该几何体的直观图是由一个三棱锥和三棱柱构成,如下图,则该几何体各面内只有两个相同的梯形,则这些梯形的面积之和为,故选B. 点睛:三视图往往与几何体的体积、表面积以及空间线面关系、角、距离等问题相结合,解决此类问题的关键是由三视图准确确定空间几何体的形状及其结构特征并且熟悉常见几何体的三视图. 8.下面程序框图是为了求出满足3n−2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入 A. A>1 000和n=n+1 B. A>1 000和n=n+2 C. A1 000和n=n+1 D. A1 000和n=n+2 【答案】D 【解析】由题意,因为,且框图中在“否”时输出,所以判定框内不能输入,故填,又要求为偶数且初始值为0,所以矩形框内填,故选D. 点睛:解决此类问题的关键是读懂程序框图,明确顺序结构、条件结构、循环结构的真正含义.本题巧妙地设置了两个空格需要填写,所以需要抓住循环的重点,偶数该如何增量,判断框内如何进行判断可以根据选项排除. 9.已知曲线C1:y=cos x,C2:y=sin (2x+),则下面结论正确的是 A. 把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2 B. 把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2 C. 把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2 D. 把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2 【答案】D 【解析】因为函数名不同,所以先将利用诱导公式转化成与相同的函数名,则,则由上各点的横坐标缩短到原来的倍变为,再将曲线向左平移个单位长度得到,故选D. 点睛:对于三角函数图象变换问题,首先要将不同名函数转换成同名函数,利用诱导公式,需要重点记住;另外,在进行图象变换时,提倡先平移后伸缩,而先伸缩后平移在考试中也经常出现,无论哪种变换,记住每一个变换总是对变量而言. 10.已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为 A. 16 B. 14 C. 12 D. 10 【答案】A 【解析】设,直线的方程为,联立方程,得,∴ ,同理直线与抛物线的交点满足,由抛物线定义可知 ,当且仅当(或)时,取等号. 点睛:对于抛物线弦长问题,要重点抓住抛物线定义,到定点的距离要想到转化到准线上,另外,直线与抛物线联立,求判别式,利用根与系数的关系是通法,需要重点掌握.考查最值问题时要能想到用函数方法和基本不等式进行解决.此题还可以利用弦长的倾斜角表示,设直线的倾斜角为,则,则,所以 . 11.设xyz为正数,且,则 A. 2x<3y<5z B. 5z<2x<3y C. 3y<5z<2x D. 3y<2x<5z 【答案】D 【解析】令,则, , ∴,则, ,则,故选D. 点睛:对于连等问题,常规的方法是令该连等为同一个常数,再用这个常数表示出对应的,通过作差或作商进行比较大小.对数运算要记住对数运算中常见的运算法则,尤其是换底公式以及0与1的对数表示. 12.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的学科网&最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是 A. 440 B. 330 C. 220 D. 110 【答案】A 【解析】由题意得,数列如下: 则该数列的前项和为 , 要使,有,此时,所以是第组等比数列的部分和,设, 所以,则,此时, 所以对应满足条件的最小整数,故选A. 点睛:本题非常巧妙地将实际问题和数列融合在一起,首先需要读懂题目所表达的具体含义,以及观察所给定数列的特征,进而判断出该数列的通项和求和.另外,本题的难点在于数列里面套数列,第一个数列的和又作为下一个数列的通项,而且最后几项并不能放在一个数列中,需要进行判断. 第II卷(非选择题) 请点击修改第II卷的文字说明 评卷人 得分 二、填空题 13.已知向量a,b的夹角为60°,|a|=2,|b|=1,则| a +2 b |= ______ . 【答案】 【解析】,所以. 点睛:平面向量中涉及有关模长的问题时,常用到的通法是将模长进行平方,利用向量数量积的知识进行解答,很快就能得出答案;另外,向量是一个工具型的知识,具备代数和几何特征,在做这类问题时可以使用数形结合的思想,会加快解题速度. 14.设x,y满足约束条件,则的最小值为____________ . 【答案】-5 【解析】绘制不等式组表示的可行域,结合目标函数的几何意义可得目标函数在点处取得最小值 . 15.已知双曲线C: (a>0,b>0)的右顶点为A,以A为圆心,b为半径做圆A,圆A与双曲线C的一条渐近线交于M、N两点。若∠MAN=60°,则C的离心率为________。 【答案】 【解析】如图所示,作,因为圆A与双曲线C的一条渐近线交于M、N两点,则为双曲线的渐近线上的点,且, , 而,所以, 点到直线的距离, 在中, ,代入计算得,即, 由得, 所以. 点睛:双曲线渐近线是其独有的性质,所以有关渐近线问题备受出题者的青睐.做好这一类问题要抓住以下重点:①求解渐近线,直接把双曲线后面的1换成0即可;②双曲线的焦点到渐近线的距离是;③双曲线的顶点到渐近线的距离是. 16.如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为O。D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形。沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥。当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为_______。 【答案】 【解析】如下图,连接DO交BC于点G,设D,E,F重合于S点,正三角形的边长为x(x>0),则 . , , 三棱锥的体积 . 设,x>0,则, 令,即,得,易知在处取得最大值. ∴. 点睛:对于三棱锥最值问题,需要用到函数思想进行解决,本题解决的关键是设好未知量,利用图形特征表示出三棱锥体积.当体积中的变量最高次是2次时可以利用二次函数的性质进行解决,当变量是高次时需要用到求导的方式进行解决. 评卷人 得分 三、解答题 17.△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为 (1)求sinBsinC; (2)若6cosBcosC=1,a=3,求△ABC的周长. 【答案】(1).(2). 【解析】试题分析:(1)由三角形面积公式建立等式,再利用正弦定理将边化成角,从而得出的值;(2)由和计算出,从而求出角,根据题设和余弦定理可以求出和的值,从而求出的周长为. 试题解析:(1)由题设得,即. 由正弦定理得. 故. (2)由题设及(1)得,即. 所以,故. 由题设得,即. 由余弦定理得,即,得. 故的周长为. 点睛:在处理解三角形问题时,要注意抓住题目所给的条件,当题设中给定三角形的面积,可以使用面积公式建立等式,再将所有边的关系转化为角的关系,有时需将角的关系转化为边的关系;解三角形问题常见的一种考题是“已知一条边的长度和它所对的角,求面积或周长的取值范围”或者“已知一条边的长度和它所对的角,再有另外一个条件,求面积或周长的值”,这类问题的通法思路是:全部转化为角的关系,建立函数关系式,如 ,从而求出范围,或利用余弦定理以及基本不等式求范围;求具体的值直接利用余弦定理和给定条件即可. 18.如图,在四棱锥P-ABCD中,AB//CD,且. (1)证明:平面PAB⊥平面PAD; (2)若PA=PD=AB=DC, ,求二面角A-PB-C的余弦值. 【答案】(1)见解析;(2). 【解析】试题分析:(1)根据题设条件可以得出AB⊥AP,CD⊥PD.而AB//CD,就可证明出AB⊥平面PAD. 进而证明出平面PAB⊥平面PAD.(2)先找出AD中点,找出相互垂直的线,建立以为坐标原点, 的方向为轴正方向, 为单位长的空间直角坐标系,列出所需要的点的坐标,设是平面的法向量, 是平面的法向量,根据垂直关系,求出和,利用数量积公式可求出二面角的平面角. 试题解析:(1)由已知,得AB⊥AP,CD⊥PD. 由于AB∥CD,故AB⊥PD,从而AB⊥平面PAD. 又AB 平面PAB,所以平面PAB⊥平面PAD. (2)在平面内做,垂足为, 由(1)可知, 平面,故,可得平面. 以为坐标原点, 的方向为轴正方向, 为单位长,建立如图所示的空间直角坐标系. 由(1)及已知可得, , , . 所以, , , . 设是平面的法向量,则 ,即, 可取. 设是平面的法向量,则 ,即, 可取. 则, 所以二面角的余弦值为. 点睛:高考对空间向量与立体几何的考查主要体现在以下几个方面:①求异面直线所成的角,关键是转化为两直线的方向向量的夹角;②求直线与平面所成的角,关键是转化为直线的方向向量和平面的法向量的夹角;③求二面角,关键是转化为两平面的法向量的夹角.建立空间直角坐标系和表示出所需点的坐标是解题的关键. 19.为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布. (1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在之外的零件数,求及的数学期望; (2)一天内抽检零件中,如果出现了尺寸在之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天内抽取的16个零件的尺寸: 9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04 10.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95 经计算得, ,其中为抽取的第个零件的尺寸, . 用样本平均数作为的估计值,用样本标准差作为的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的学科网数据,用剩下的数据估计和(精确到0.01). 附:若随机变量服从正态分布,则, , . 【答案】(1).(2)(i)见解析;(ii). 【解析】试题分析:(1)根据题设条件知一个零件的尺寸在之内的概率为0.9974,则零件的尺寸在之外的概率为0.0026,而,进而可以求出的数学期望.(2)(i)判断监控生产过程的方法的合理性,重点是考虑一天内抽取的16个零件中,出现尺寸在之外的零件的概率是大还是小,若小即合理;(ii)根据题设条件算出的估计值和的估计值,剔除之外的数据9.22,算出剩下数据的平均数,即为的估计值,剔除之外的数据9.22,剩下数据的样本方差,即为的估计值. 试题解析:(1)抽取的一个零件的尺寸在之内的概率为0.9974,从而零件的尺寸在之外的概率为0.0026,故.因此 . 的数学期望为. (2)(i)如果生产状态正常,一个零件尺寸在之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在之外的零件的概率只有0.0408,发生的概率很小.因此一旦发生这种情况,就有理由认为这条生产线在这一天的生产过程学科&网可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的. (ii)由,得的估计值为, 的估计值为,由样本数据可以看出有一个零件的尺寸在之外,因此需对当天的生产过程进行检查. 剔除之外的数据9.22,剩下数据的平均数为 ,因此的估计值为10.02. ,剔除之外的数据9.22,剩下数据的样本方差为, 因此的估计值为. 点睛:数学期望是离散型随机变量中重要的数学概念,反映随机变量取值的平均水平.求解离散型随机变量的分布列、数学期望时,首先要分清事件的构成与性质,确定离散型随机变量的所有取值,然后根据概率类型选择公式,计算每个变量取每个值的概率,列出对应的分布列,最后求出数学期望.正态分布是一种重要的分布,之前考过一次,尤其是正态分布的原则. 20.已知椭圆C: (a>b>0),四点P1(1,1),P2(0,1),P3(–1, ),P4(1, )中恰有三点在椭圆C上. (1)求C的方程; (2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点. 【答案】(1).(2)见解析。 【解析】试题分析:(1)根据, 两点关于y轴对称,由椭圆的对称性可知C经过, 两点.另外由知,C不经过点P1,所以点P2在C上.因此在椭圆上,代入其标准方程,即可求出C的方程;(2)先设直线P2A与直线P2B的斜率分别为k1,k2,再设直线l的方程,当l与x轴垂直时,通过计算,不满足题意,再设l: (),将代入,写出判别式,利用根与系数的关系表示出x1+x2,x1x2,进而表示出,根据列出等式表示出和 的关系,从而判断出直线恒过定点. 试题解析:(1)由于, 两点关于y轴对称,故由题设知C经过, 两点. 又由知,C不经过点P1,所以点P2在C上. 因此,解得. 故C的方程为. (2)设直线P2A与直线P2B的斜率分别为k1,k2, 如果l与x轴垂直,设l:x=t,由题设知,且,可得A,B的坐标分别为(t, ),(t, ). 则,得,不符合题设. 从而可设l: ().将代入得 由题设可知. 设A(x1,y1),B(x2,y2),则x1+x2=,x1x2=. 而 . 由题设,故. 即. 解得. 当且仅当时, ,欲使l: ,即, 所以l过定点(2, ) 点睛:椭圆的对称性是椭圆的一个重要性质,判断点是否在椭圆上,可以通过这一方法进行判断;证明直线过定点的关键是设出直线方程,通过一定关系转化,找出两个参数之间的关系式,从而可以判断过定点情况.另外,在设直线方程之前,若题设中未告知,则一定要讨论直线斜率不存在和存在两种情况,其通法是联立方程,求判别式,利用根与系数的关系,再根据题设关系进行化简. 21.已知函数ae2x+(a﹣2) ex﹣x. (1)讨论的单调性; (2)若有两个零点,求a的取值范围. 【答案】(1)见解析;(2). 【解析】试题分析:(1)讨论单调性,首先进行求导,发现式子特点后要及时进行因式分解,再对按, 进行讨论,写出单调区间;(2)根据第(1)问,若, 至多有一个零点.若,当时, 取得最小值,求出最小值,根据, , 进行讨论,可知当时有2个零点.易知在有一个零点;设正整数满足,则.由于 ,因此在有一个零点.从而可得的取值范围为. 试题解析:(1)的定义域为, , (ⅰ)若,则,所以在单调递减. (ⅱ)若,则由得. 当时, ;当时, ,所以在单调递减,在单调递增. (2)(ⅰ)若,由(1)知, 至多有一个零点. (ⅱ)若,由(1)知,当时, 取得最小值,最小值为. ①当时,由于,故只有一个零点; ②当时,由于,即,故没有零点; ③当时, ,即. 又,故在有一个零点. 设正整数满足,则. 由于,因此在有一个零点. 综上, 的取值范围为. 点睛:研究函数零点问题常常与研究对应方程的实根问题相互转化.已知函数有2个零点求参数a的取值范围,第一种方法是分离参数,构造不含参数的函数,研究其单调性、极值、最值,判断与其交点的个数,从而求出a的取值范围;第二种方法是直接对含参函数进行研究,研究其单调性、极值、最值,注意点是若有2个零点,且函数先减后增,则只需其最小值小于0,且后面还需验证最小值两边存在大于0的点. 22.[选修4―4:坐标系与参数方程] 在直角坐标系xOy中,曲线C的参数方程为(θ为参数),直线l的参数方程为. (1)若a=−1,求C与l的交点坐标; (2)若C上的点到l的距离的最大值为,求a. 【答案】(1)与的交点坐标为, ;(2)或. 【解析】试题分析:(1)直线与椭圆的参数方程化为直角坐标方程,联立解交点坐标;(2)利用椭圆参数方程,设点,由点到直线距离公式求参数. 试题解析:(1)曲线的普通方程为. 当时,直线的普通方程为. 由解得或. 从而与的交点坐标为, . (2)直线的普通方程为,故上的点到的距离为 . 当时, 的最大值为.由题设得,所以; 当时, 的最大值为.由题设得,所以. 综上, 或. 点睛:本题为选修内容,先把直线与椭圆的参数方程化为直角坐标方程,联立方程,可得交点坐标,利用椭圆的参数方程,求椭圆上一点到一条直线的距离的最大值,直接利用点到直线的距离公式,表示出椭圆上的点到直线的距离,利用三角有界性确认最值,进而求得参数的值. 23.[选修4—5:不等式选讲] 已知函数f(x)=–x2+ax+4,g(x)=│x+1│+│x–1│. (1)当a=1时,求不等式f(x)≥g(x)的解集; (2)若不等式f(x)≥g(x)的解集包含[–1,1],求a的取值范围. 【答案】(1);(2). 【解析】试题分析:(1)分, , 三种情况解不等式;(2)的解集包含,等价于当时,所以且,从而可得. 试题解析:(1)当时,不等式等价于.① 当时,①式化为,无解; 当时,①式化为,从而; 当时,①式化为,从而. 所以的解集为. (2)当时, . 所以的解集包含,等价于当时. 又在的学科&网最小值必为与之一,所以且,得. 所以的取值范围为. 点睛:形如 (或)型的不等式主要有两种解法: (1)分段讨论法:利用绝对值号内式子对应方程的根,将数轴分为, , (此处设)三个部分,将每部分去掉绝对值号并分别列出对应的不等式求解,然后取各个不等式解集的并集. (2)图像法:作出函数和的图像,结合图像求解.查看更多