- 2021-04-14 发布 |
- 37.5 KB |
- 11页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
全国各地高中概率高考真题总结
全国各地高考及模拟试卷试题分类----------概率 选择题 1.6名同学排成两排,每排3人,其中甲排在前排的概率是 ( B ) A. B. C. D. 2.有10名学生,其中4名男生,6名女生,从中任选2名,恰好2名男生或2名女生的概 率是 ( D ) A. B. C. D. 3.甲乙两人独立的解同一道题,甲乙解对的概率分别是,那么至少有1人解对的概率 是 ( D ) A. B. C. D. 4.从数字1, 2, 3, 4, 5这五个数中, 随机抽取2个不同的数, 则这2个数的和为偶数的概率 是 ( B ) A. B. C. D. 5.有2n个数字,其中一半是奇数,一半是偶数,从中任取两个数,则所取的两数之和 为偶数的概率是 ( C ) A、 B、 C、 D、 6.有10名学生,其中4名男生,6名女生,从中任选2名学生,恰好是2名男生或2名 女生的概率是 ( C ) A. B. C. D. 7.已知P箱中有红球1个,白球9个,Q箱中有白球7个,(P、Q箱中所有的球除颜色 外完全相同).现随意从P箱中取出3个球放入Q箱,将Q箱中的球充分搅匀后,再 从Q箱中随意取出3个球放入P箱,则红球从P箱移到Q箱,再从Q箱返回P箱中的 概率等于 ( B ) A. B. C. D. C9 2/C10 3 乘以C9 2/C10 3 8.已知集合A={12,14,16,18,20},B={11,13,15,17,19},在A中任取一个元素 用ai(i=1,2,3,4,5)表示,在B中任取一个元素用bj(j=1,2,3,4,5)表示,则 所取两数满足ai>bI的概率为( B ) A、 B、 C、 D、 9.在圆周上有10个等分点,以这些点为顶点,每3个点可以构成一个三角形,如果随 机选择3个点,刚好构成直角三角形的概率是( B )直径有5个 A. B. C. D. 10.已知10个产品中有3个次品,现从其中抽出若干个产品,要使这3个次品全部被抽 出的概率不小于0.6,则至少应抽出产品 ( C ) A.7个 B.8个 C.9个 D.10个 11.甲、乙独立地解决 同一数学问题,甲解决这个问题的概率是0.8,乙解决这个问题的 概率是0.6,那么其中至少有1人解决这个问题的概率是( D ) A、0.48 B、0.52 C、0.8 D、0.92 填空题 1.纺织厂的一个车间有n(n>7,n∈N)台织布机,编号分别为1,2,3,……,n,该车 间有技术工人n名,编号分别为1,2,3,……,n.现定义记号如下:如果第i名 工人操作了第j号织布机,此时规定=1,否则=0.若第7号织布机有且仅有一人 操作,则 1 ;若, 说明了什么: 第三名工人操作了2台织布机 ; 2.从6人中选4人分别到巴黎,伦敦,悉尼,莫斯科四个城市游览,要求每个城市有一 人游览,每人只游览一个城市,且这6人中甲,乙两人不去巴黎游览的概率为 .(用分数表示) 3.某商场开展促销抽奖活动,摇出的中奖号码是8,2,5,3,7,1,参加抽奖的每位顾 客从0~9这10个号码中任意抽出六个组成一组,若顾客抽出的六个号码中至少有5 个与摇出的号码相同(不计顺序)即可得奖,则中奖的概率是_______. 4.某中学的一个研究性学习小组共有10名同学,其中男生x名(3≤x≤9),现从中选出 3人参加一项调查活动,若至少有一名女生去参加的概率为f(x),则f(x)max= _ _ 解答题 1.甲、乙两名篮球运动员,甲投篮的命中率为0.6,乙投篮的命中率为0.7,两人是否投 中相互之间没有影响,求: (1)两人各投一次,只有一人命中的概率; (2)每人投篮两次,甲投中1球且乙投中2球的概率. 解: (1)P1=0.6(1-0.7)+(1-0.6)0.7=0.46. 6分 (2)P2=[0.6(1-0.6)]·[(0.7)2(1-0.7)0]=0.2352. 12分 2.工人看管三台机床,在某一小时内,三台机床正常工作的概率分别为0.9,0.8,0.85, 且各台机床是否正常工作相互之间没有影响,求这个小时内: (1)三台机床都能正常工作的概率; (2)三台机床中至少有一台能正常工作的概率. 解:(1)三台机床都能正常工作的概率为P1=0.9×0.8×0.85=0.612. 6分 (2)三台机床至少有一台能正常工作的概率是 P2=1-(1-0.9)(1-0.8)(1-0.85)=0.997. 12分 3.甲、乙两名篮球运动员,投篮的命中率分别为0.7与0.8. (1)如果每人投篮一次,求甲、乙两人至少有一人进球的概率; (2)如果每人投篮三次,求甲投进2球且乙投进1球的概率. 解:设甲投中的事件记为A,乙投中的事件记为B, (1)所求事件的概率为: P=P(A·)+P(·B)+P(A·B) =0.7×0.2+0.3×0.8+0.7×0.8 =0.94. 6分 (2)所求事件的概率为: P=C0.72×0.3×C0.8×0.22=0.042336. 12分 4.沿某大街在甲、乙、丙三个地方设有红、绿交通信号灯,汽车在甲、乙、丙三个地方 通过(绿灯亮通过)的概率分别为,,,对于在该大街上行驶的汽车, 求:(1)在三个地方都不停车的概率; (2)在三个地方都停车的概率; (3)只在一个地方停车的概率. 解:(1)P=××=. 4分 (2)P=××= 8分 (3)P=××+××+××=. 12分 5.某种电路开关闭合后,会出现红灯或绿灯闪动.已知开关第一次闭合后,出现红灯和 出现绿灯的概率都是,从开关第二次闭合起,若前次出现红灯,则下一次出现红灯 的概率是,出现绿灯的概率是,若前次出现绿灯,则下一次出现红灯的概率是, 出现绿灯的概率是.问: (1)第二次闭合后,出现红灯的概率是多少? (2)三次发光中,出现一次红灯,两次绿灯的概率是多少? 解:(1)如果第一次出现红灯,则接着又出现红灯的概率是×, 如果第一次出现绿灯,则接着出现红灯的概率为×. ∴第二次出现红灯的概率为×+×=. 6分 (2)由题意,三次发光中,出现一次红灯,两次绿灯的情况共有如下三种方式: ①出现绿、绿、红的概率为××; ②出现绿、红、绿的概率为××; ③出现红、绿、绿的概率为××; 10分 所求概率为××+××+××=. 12分 6.袋内装有35个球,每个球上都记有从1到35的一个号码,设号码n的球重-5n+15 克,这些球以等可能性从袋里取出(不受重量、号码的影响). (1)如果任意取出1球,试求其重量大于号码数的概率; (2)如果任意取出2球,试求它们重量相等的概率 解:(1)由不等式-5n+15>n,得n>15,或n<3. 由题意,知n=1,2或n=16,17,…,35.于是所求概率为. 6分 (2)设第n号与第m号的两个球的重量相等,其中n查看更多
相关文章
- 当前文档收益归属上传用户
- 下载本文档