- 2021-04-14 发布 |
- 37.5 KB |
- 38页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
全国各地中考数学压轴题汇编选择填空华北东北专版解析卷
2018年全国各地中考数学压轴题汇编(华北东北专版) 选择、填空 参考答案与试题解析 一.选择题(共20小题) 1.(2018•北京)跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某运动员起跳后的x与y的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为( ) A.10m B.15m C.20m D.22.5m 解:根据题意知,抛物线y=ax2+bx+c(a≠0)经过点(0,54.0)、(40,46.2)、(20,57.9), 则 解得, 所以x=﹣==15(m). 故选:B. 2.(2018•天津)如图,在正方形ABCD中,E,F分别为AD,BC的中点,P为对角线BD上的一个动点,则下列线段的长等于AP+EP最小值的是( ) A.AB B.DE C.BD D.AF 解:如图,连接CP, 由AD=CD,∠ADP=∠CDP=45°,DP=DP,可得△ADP≌△CDP, ∴AP=CP, ∴AP+PE=CP+PE, ∴当点E,P,C在同一直线上时,AP+PE的最小值为CE长, 此时,由AB=CD,∠ABF=∠CDE,BF=DE,可得△ABF≌△CDE, ∴AF=CE, ∴AP+EP最小值等于线段AF的长, 故选:D. 3.(2018•河北)如图,点I为△ABC的内心,AB=4,AC=3,BC=2,将∠ACB平移使其顶点与I重合,则图中阴影部分的周长为( ) A.4.5 B.4 C.3 D.2 解:连接AI、BI, ∵点I为△ABC的内心, ∴AI平分∠CAB, ∴∠CAI=∠BAI, 由平移得:AC∥DI, ∴∠CAI=∠AID, ∴∠BAI=∠AID, ∴AD=DI, 同理可得:BE=EI, ∴△DIE的周长=DE+DI+EI=DE+AD+BE=AB=4, 即图中阴影部分的周长为4, 故选:B. 4.(2018•山西)如图,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=6,将△ABC绕点C按逆时针方向旋转得到△A'B'C,此时点A'恰好在AB边上,则点B'与点B之间的距离为( ) A.12 B.6 C. D. 解:连接B'B, ∵将△ABC绕点C按逆时针方向旋转得到△A'B'C, ∴AC=A'C,AB=A'B,∠A=∠CA'B'=60°, ∴△AA'C是等边三角形, ∴∠AA'C=60°, ∴∠B'A'B=180°﹣60°﹣60°=60°, ∵将△ABC绕点C按逆时针方向旋转得到△A'B'C, ∴∠ACA'=∠BAB'=60°,BC=B'C,∠CB'A'=∠CBA=90°﹣60°=30°, ∴△BCB'是等边三角形, ∴∠CB'B=60°, ∵∠CB'A'=30°, ∴∠A'B'B=30°, ∴∠B'BA'=180°﹣60°﹣30°=90°, ∵∠ACB=90°,∠A=60°,AC=6, ∴AB=12, ∴A'B=AB﹣AA'=AB﹣AC=6, ∴B'B=6, 故选:D. 5.(2018•天津)已知抛物线y=ax2+bx+c(a,b,c为常数,a≠0)经过点(﹣1,0),(0,3),其对称轴在y轴右侧.有下列结论: ①抛物线经过点(1,0); ②方程ax2+bx+c=2有两个不相等的实数根; ③﹣3<a+b<3 其中,正确结论的个数为( ) A.0 B.1 C.2 D.3 解:①∵抛物线过点(﹣1,0),对称轴在y轴右侧, ∴当x=1时y>0,结论①错误; ②过点(0,2)作x轴的平行线,如图所示. ∵该直线与抛物线有两个交点, ∴方程ax2+bx+c=2有两个不相等的实数根,结论②正确; ③∵当x=1时y=a+b+c>0, ∴a+b>﹣c. ∵抛物线y=ax2+bx+c(a,b,c为常数,a≠0)经过点(0,3), ∴c=3, ∴a+b>﹣3. ∵当x=﹣1时,y=0,即a﹣b+c=0, ∴b=a+c, ∴a+b=2a+c. ∵抛物线开口向下, ∴a<0, ∴a+b<c=3, ∴﹣3<a+b<3,结论③正确. 故选:C. 6.(2018•山西)如图,正方形ABCD内接于⊙O,⊙O的半径为2,以点A为圆心,以AC长为半径画弧交AB的延长线于点E,交AD的延长线于点F,则图中阴影部分的面积为( ) A.4π﹣4 B.4π﹣8 C.8π﹣4 D.8π﹣8 解:利用对称性可知:阴影部分的面积=扇形AEF的面积﹣△ABD的面积=﹣×4×2=4π﹣4, 故选:A. 7.(2018•包头)如图,在△ABC中,AB=AC,△ADE的顶点D,E分别在BC,AC上,且∠DAE=90°,AD=AE.若∠C+∠BAC=145°,则∠EDC的度数为( ) A.17.5° B.12.5° C.12° D.10° 解:∵AB=AC, ∴∠B=∠C, ∴∠B+∠C+∠BAC=2∠C+∠BAC=180°, 又∵∠C+∠BAC=145°, ∴∠C=35°, ∵∠DAE=90°,AD=AE, ∴∠AED=45°, ∴∠EDC=∠AED﹣∠C=10°, 故选:D. 8.(2018•呼和浩特)若满足<x≤1的任意实数x,都能使不等式2x3﹣x2﹣mx>2成立,则实数m的取值范围是( ) A.m<﹣1 B.m≥﹣5 C.m<﹣4 D.m≤﹣4 解:∵满足<x≤1的任意实数x,都能使不等式2x3﹣x2﹣mx>2成立, ∴m<, ∴m≤﹣4 故选:D. 9.(2018•包头)如图,在平面直角坐标系中,直线l1:y=﹣x+1与x轴,y轴分别交于点A和点B,直线l2:y=kx(k≠0)与直线l1在第一象限交于点C.若∠BOC=∠BCO,则k的值为( ) A. B. C. D.2 解:直线l1:y=﹣x+1中,令x=0,则y=1,令y=0,则x=2, 即A(2,0)B(0,1), ∴Rt△AOB中,AB==3, 如图,过C作CD⊥OA于D, ∵∠BOC=∠BCO, ∴CB=BO=1,AC=2, ∵CD∥BO, ∴OD=AO=,CD=BO=, 即C(,), 把C(,)代入直线l2:y=kx,可得 =k, 即k=, 故选:B. 10.(2018•赤峰)如图,直线y=﹣x+3与x轴、y轴分别交于A、B两点,点P是以C(﹣1,0)为圆心,1为半径的圆上一点,连接PA,PB,则△PAB面积的最小值是( ) A.5 B.10 C.15 D.20 解:作CH⊥AB于H交⊙O于E、F. ∵C(﹣1,0),直线AB的解析式为y=﹣x+3, ∴直线CH的解析式为y=x+, 由解得, ∴H(,), ∴CH==3, ∵A(4,0),B(0,3), ∴OA=4,OB=3,AB=5, ∴EH=3﹣1=2, 当点P与E重合时,△PAB的面积最小,最小值=×5×2=5, 故选:A. 11.(2018•包头)如图,在四边形ABCD中,BD平分∠ABC,∠BAD=∠BDC=90°,E为BC的中点,AE与BD相交于点F.若BC=4,∠CBD=30°,则DF的长为( ) A. B. C. D. 解:如图, 在Rt△BDC中,BC=4,∠DBC=30°, ∴BD=2, 连接DE, ∵∠BDC=90°,点D是BC中点, ∴DE=BE=CEBC=2, ∵∠DCB=30°, ∴∠BDE=∠DBC=30°, ∵BD平分∠ABC, ∴∠ABD=∠DBC, ∴∠ABD=∠BDE, ∴DE∥AB, ∴△DEF∽△BAF, ∴, 在Rt△ABD中,∠ABD=30°,BD=2, ∴AB=3, ∴, ∴, ∴DF=BD=×2=, 故选:D. 12.(2018•通辽)如图,▱ABCD的对角线AC、BD交于点O,DE平分∠ADC交AB于点E,∠BCD=60°,AD=AB,连接OE.下列结论:①S▱ABCD=AD•BD;②DB平分∠CDE;③AO=DE;④S△ADE=5S△OFE,其中正确的个数有( ) A.1个 B.2个 C.3个 D.4个 解:∵∠BAD=∠BCD=60°,∠ADC=120°,DE平分∠ADC, ∴∠ADE=∠DAE=60°=∠AED, ∴△ADE是等边三角形, ∴AD=AE=AB, ∴E是AB的中点, ∴DE=BE, ∴∠BDE=∠AED=30°, ∴∠ADB=90°,即AD⊥BD, ∴S▱ABCD=AD•BD,故①正确; ∵∠CDE=60°,∠BDE30°, ∴∠CDB=∠BDE, ∴DB平分∠CDE,故②正确; ∵Rt△AOD中,AO>AD, ∴AO>DE,故③错误; ∵O是BD的中点,E是AB的中点, ∴OE是△ABD的中位线, ∴OE∥AD,OE=AD, ∴△OEF∽△ADF, ∴S△ADF=4S△OEF,且AF=2OF, ∴S△AEF=2S△OEF, ∴S△ADE=6S△OFE,故④错误; 故选:B. 13.(2018•黑龙江)如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,AB=BC=1,则下列结论: ①∠CAD=30°②BD=③S平行四边形ABCD=AB•AC④OE=AD⑤S△APO=,正确的个数是( ) A.2 B.3 C.4 D.5 解:①∵AE平分∠BAD, ∴∠BAE=∠DAE, ∵四边形ABCD是平行四边形, ∴AD∥BC,∠ABC=∠ADC=60°, ∴∠DAE=∠BEA, ∴∠BAE=∠BEA, ∴AB=BE=1, ∴△ABE是等边三角形, ∴AE=BE=1, ∵BC=2, ∴EC=1, ∴AE=EC, ∴∠EAC=∠ACE, ∵∠AEB=∠EAC+∠ACE=60°, ∴∠ACE=30°, ∵AD∥BC, ∴∠CAD=∠ACE=30°, 故①正确; ②∵BE=EC,OA=OC, ∴OE=AB=,OE∥AB, ∴∠EOC=∠BAC=60°+30°=90°, Rt△EOC中,OC==, ∵四边形ABCD是平行四边形, ∴∠BCD=∠BAD=120°, ∴∠ACB=30°, ∴∠ACD=90°, Rt△OCD中,OD==, ∴BD=2OD=, 故②正确; ③由②知:∠BAC=90°, ∴S▱ABCD=AB•AC, 故③正确; ④由②知:OE是△ABC的中位线, ∴OE=AB, ∵AB=BC, ∴OE=BC=AD, 故④正确; ⑤∵四边形ABCD是平行四边形, ∴OA=OC=, ∴S△AOE=S△EOC=OE•OC==, ∵OE∥AB, ∴, ∴=, ∴S△AOP===; 故⑤正确; 本题正确的有:①②③④⑤,5个, 故选:D. 14.(2018•哈尔滨)如图,在△ABC中,点D在BC边上,连接AD,点G在线段AD上,GE∥BD,且交AB于点E,GF∥AC,且交CD于点F,则下列结论一定正确的是( ) A. = B. = C. = D. = 解:∵GE∥BD,GF∥AC, ∴△AEG∽△ABD,△DFG∽△DCA, ∴=, =, ∴==. 故选:D. 15.(2018•齐齐哈尔)抛物线C1:y1=mx2﹣4mx+2n﹣1与平行于x轴的直线交于A、B两点,且A点坐标为(﹣1,2),请结合图象分析以下结论:①对称轴为直线x=2;②抛物线与y轴交点坐标为(0,﹣1);③m>;④若抛物线C2:y2=ax2(a≠0)与线段AB恰有一个公共点,则a的取值范围是≤a<2;⑤不等式mx2﹣4mx+2n>0的解作为函数C1的自变量的取值时,对应的函数值均为正数,其中正确结论的个数有( ) A.2个 B.3个 C.4个 D.5个 解:抛物线对称轴为直线x=﹣故①正确; 当x=0时,y=2n﹣1故②错误; 把A点坐标(﹣1,2)代入抛物线解析式 得:2=m+4m+2n﹣1 整理得:2n=3﹣5m 带入y1=mx2﹣4mx+2n﹣1 整理的:y1=mx2﹣4mx+2﹣5m 由图象可知,抛物线交y轴于负半轴, 则:2﹣5m<0 即m>故③正确; 由抛物线的对称性,点B坐标为(5,2) 当y2=ax2的图象分别过点A、B时,其与线段分别有且只有一个公共点 此时,a的值分别为a=2、a= a的取值范围是≤a<2;故④正确; 不等式mx2﹣4mx+2n>0的解可以看做是,抛物线y1=mx2﹣4mx+2n﹣1位于直线y=﹣1上方的部分,由图象可知,其此时x的取值范围使y1=mx2﹣4mx+2n﹣1函数图象分别位于轴上下方故⑤错误; 故选:B. 16.(2018•大庆)如图,二次函数y=ax2+bx+c的图象经过点A(﹣1,0)、点B(3,0)、点C(4,y1),若点D(x2,y2)是抛物线上任意一点,有下列结论: ①二次函数y=ax2+bx+c的最小值为﹣4a; ②若﹣1≤x2≤4,则0≤y2≤5a; ③若y2>y1,则x2>4; ④一元二次方程cx2+bx+a=0的两个根为﹣1和 其中正确结论的个数是( ) A.1 B.2 C.3 D.4 解:抛物线解析式为y=a(x+1)(x﹣3), 即y=ax2﹣2ax﹣3a, ∵y=a(x﹣1)2﹣4a, ∴当x=1时,二次函数有最小值﹣4a,所以①正确; 当x=4时,y=a•5•1=5a, ∴当﹣1≤x2≤4,则﹣4a≤y2≤5a,所以②错误; ∵点C(1,5a)关于直线x=1的对称点为(﹣2,﹣5a), ∴当y2>y1,则x2>4或x<﹣2,所以③错误; ∵b=﹣2a,c=﹣3a, ∴方程cx2+bx+a=0化为﹣3ax2﹣2ax+a=0, 整理得3x2+2x﹣1=0,解得x1=﹣1,x2=,所以④正确. 故选:B. 17.(2018•抚顺)如图,菱形ABCD的边AD与x轴平行,A、B两点的横坐标分别为1和3,反比例函数y=的图象经过A、B两点,则菱形ABCD的面积是( ) A.4 B.4 C.2 D.2 解:作AH⊥BC交CB的延长线于H, ∵反比例函数y=的图象经过A、B两点,A、B两点的横坐标分别为1和3, ∴A、B两点的纵坐标分别为3和1,即点A的坐标为(1,3),点B的坐标为(3,1), ∴AH=3﹣1=2,BH=3﹣1=2, 由勾股定理得,AB==2, ∵四边形ABCD是菱形, ∴BC=AB=2, ∴菱形ABCD的面积=BC×AH=4, 故选:A. 18.(2018•盘锦)如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,顶点A、C分别在x轴、y轴上,反比例函数y=(k≠0,x>0)的图象与正方形OABC的两边AB、BC分别交于点M、N,ND⊥x轴,垂足为D,连接OM、ON、MN,则下列选项中的结论错误的是( ) A.△ONC≌△OAM B.四边形DAMN与△OMN面积相等 C.ON=MN D.若∠MON=45°,MN=2,则点C的坐标为(0, +1) 解:∵点M、N都在y=的图象上, ∴S△ONC=S△OAM=k,即 OC•NC=OA•AM, ∵四边形ABCO为正方形, ∴OC=OA,∠OCN=∠OAM=90°, ∴NC=AM, ∴△OCN≌△OAM, ∴A正确; ∵S△OND=S△OAM=k, 而S△OND+S四边形DAMN=S△OAM+S△OMN, ∴四边形DAMN与△MON面积相等, ∴B正确; ∵△OCN≌△OAM, ∴ON=OM, ∵k的值不能确定, ∴∠MON的值不能确定, ∴△ONM只能为等腰三角形,不能确定为等边三角形, ∴ON≠MN, ∴C错误; 作NE⊥OM于E点,如图所示: ∵∠MON=45°,∴△ONE为等腰直角三角形, ∴NE=OE, 设NE=x,则ON=x, ∴OM=x, ∴EM=x﹣x=(﹣1)x, 在Rt△NEM中,MN=2, ∵MN2=NE2+EM2,即22=x2+[(﹣1)x]2, ∴x2=2+, ∴ON2=( x)2=4+2, ∵CN=AM,CB=AB, ∴BN=BM, ∴△BMN为等腰直角三角形, ∴BN=MN=, 设正方形ABCO的边长为a,则OC=a,CN=a﹣, 在Rt△OCN中,∵OC2+CN2=ON2, ∴a2+(a﹣)2=4+2,解得a1=+1,a2=﹣1(舍去), ∴OC=+1, ∴C点坐标为(0, +1), ∴D正确. 故选:C. 19.(2018•抚顺)已知抛物线y=ax2+bx+c(0<2a≤b)与x轴最多有一个交点.以下四个结论: ①abc>0; ②该抛物线的对称轴在x=﹣1的右侧; ③关于x的方程ax2+bx+c+1=0无实数根; ④≥2. 其中,正确结论的个数为( ) A.1个 B.2个 C.3个 D.4个 解:①∵抛物线y=ax2+bx+c(0<2a≤b)与x轴最多有一个交点, ∴抛物线与y轴交于正半轴, ∴c>0, ∴abc>0. 故正确; ②∵0<2a≤b, ∴>1, ∴﹣<﹣1, ∴该抛物线的对称轴在x=﹣1的左侧. 故错误; ③由题意可知:对于任意的x,都有y=ax2+bx+c≥0, ∴ax2+bx+c+1≥1>0,即该方程无解, 故正确; ④∵抛物线y=ax2+bx+c(0<2a≤b)与x轴最多有一个交点, ∴当x=﹣1时,y>0, ∴a﹣b+c>0, ∴a+b+c≥2b, ∵b>0, ∴≥2. 故正确. 综上所述,正确的结论有3个. 故选:C. 20.(2018•葫芦岛)如图,在▱ABCD中,AB=6,BC=10,AB⊥AC,点P从点B出发沿着B→A→C的路径运动,同时点Q从点A出发沿着A→C→D的路径以相同的速度运动,当点P到达点C时,点Q随之停止运动,设点P运动的路程为x,y=PQ2,下列图象中大致反映y与x之间的函数关系的是( ) A. B. C. D. 解:在Rt△ABC中,∠BAC=90°,AB=6,BC=10, ∴AC==8. 当0≤x≤6时,AP=6﹣x,AQ=x, ∴y=PQ2=AP2+AQ2=2x2﹣12x+36; 当6≤x≤8时,AP=x﹣6,AQ=x, ∴y=PQ2=(AQ﹣AP)2=36; 当8≤x≤14时,CP=14﹣x,CQ=x﹣8, ∴y=PQ2=CP2+CQ2=2x2﹣44x+260. 故选:B. 二.填空题(共20小题) .(2018•北京)如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC于点F,若AB=4,AD=3,则CF的长为 . 解:∵四边形ABCD为矩形, ∴AB=CD,AD=BC,AB∥CD, ∴∠FAE=∠FCD, 又∵∠AFE=∠CFD, ∴△AFE∽△CFD, ∴==2. ∵AC==5, ∴CF=•AC=×5=. 故答案为:. 22.(2018•河北)如图1,作∠BPC平分线的反向延长线PA,现要分别以∠APB,∠APC,∠BPC为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以∠BPC为内角,可作出一个边长为1的正方形,此时∠BPC=90°,而=45是360°(多边形外角和)的,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图2所示. 图2中的图案外轮廓周长是 14 ; 在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是 . 解:图2中的图案外轮廓周长是:8﹣2+2+8﹣2=14; 设∠BPC=2x, ∴以∠BPC为内角的正多边形的边数为: =, 以∠APB为内角的正多边形的边数为:, ∴图案外轮廓周长是=﹣2+﹣2+﹣2=+﹣6, 根据题意可知:2x的值只能为60°,90°,120°,144°, 当x越小时,周长越大, ∴当x=30时,周长最大,此时图案定为会标, 则会标的外轮廓周长是=+﹣6=, 故答案为:14,. 23.(2018•天津)如图,在边长为4的等边△ABC中,D,E分别为AB,BC的中点,EF ⊥AC于点F,G为EF的中点,连接DG,则DG的长为 . 解:连接DE, ∵在边长为4的等边△ABC中,D,E分别为AB,BC的中点, ∴DE是△ABC的中位线, ∴DE=2,且DE∥AC,BD=BE=EC=2, ∵EF⊥AC于点F,∠C=60°, ∴∠FEC=30°,∠DEF=∠EFC=90°, ∴FC=EC=1, 故EF==, ∵G为EF的中点, ∴EG=, ∴DG==. 故答案为:. 24.(2018•山西)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D是AB的中点,以CD为直径作⊙O,⊙O分别与AC,BC交于点E,F,过点F作⊙O的切线FG,交AB于点G,则FG的长为 . 解:如图, 在Rt△ABC中,根据勾股定理得,AB=10, ∴点D是AB中点, ∴CD=BD=AB=5, 连接DF, ∵CD是⊙O的直径, ∴∠CFD=90°, ∴BF=CF=BC=4, ∴DF==3, 连接OF, ∵OC=OD,CF=BF, ∴OF∥AB, ∴∠OFC=∠B, ∵FG是⊙O的切线, ∴∠OFG=90°, ∴∠OFC+∠BFG=90°, ∴∠BFG+∠B=90°, ∴FG⊥AB, ∴S△BDF=DF×BF=BD×FG, ∴FG===, 故答案为. 25.(2018•包头)以矩形ABCD两条对角线的交点O为坐标原点,以平行于两边的方向为坐标轴,建立如图所示的平面直角坐标系,BE⊥AC,垂足为E.若双曲线y=(x>0)经过点D,则OB•BE的值为 3 . 解:如图, ∵双曲线y=(x>0)经过点D, ∴S△ODF=k=, 则S△AOB=2S△ODF=,即OA•BE=, ∴OA•BE=3, ∵四边形ABCD是矩形, ∴OA=OB, ∴OB•BE=3, 故答案为:3. 26.(2018•呼和浩特)如图,已知正方形ABCD,点M是边BA延长线上的动点(不与点A重合),且AM<AB,△CBE由△DAM平移得到.若过点E作EH⊥AC,H为垂足,则有以下结论:①点M位置变化,使得∠DHC=60°时,2BE=DM;②无论点M运动到何处,都有DM=HM;③无论点M运动到何处,∠CHM一定大于135°.其中正确结论的序号为 ①②③ . 解:由题可得,AM=BE, ∴AB=EM=AD, ∵四边形ABCD是正方形,EH⊥AC, ∴EM=AH,∠AHE=90°,∠MEH=∠DAH=45°=∠EAH, ∴EH=AH, ∴△MEH≌△DAH(SAS), ∴∠MHE=∠DHA,MH=DH, ∴∠MHD=∠AHE=90°,△DHM是等腰直角三角形, ∴DM=HM,故②正确; 当∠DHC=60°时,∠ADH=60°﹣45°=15°, ∴∠ADM=45°﹣15°=30°, ∴Rt△ADM中,DM=2AM, 即DM=2BE,故①正确; ∵点M是边BA延长线上的动点(不与点A重合),且AM<AB, ∴∠AHM<∠BAC=45°, ∴∠CHM>135°,故③正确; 故答案为:①②③. 27.(2018•包头)如图,在Rt△ACB中,∠ACB=90°,AC=BC,D是AB上的一个动点(不与点A,B重合),连接CD,将CD绕点C顺时针旋转90°得到CE,连接DE,DE与AC相交于点F,连接AE.下列结论: ①△ACE≌△BCD; ②若∠BCD=25°,则∠AED=65°; ③DE2=2CF•CA; ④若AB=3,AD=2BD,则AF=. 其中正确的结论是 ①②③ .(填写所有正确结论的序号) 解:∵∠ACB=90°, 由旋转知,CD=CE,∠DCE=90°=∠ACB, ∴∠BCD=∠ACE, 在△BCD和△ACE中,, ∴△BCD≌△ACE,故①正确; ∵∠ACB=90°,BC=AC, ∴∠B=45° ∵∠BCD=25°, ∴∠BDC=180°﹣45°﹣25°=110°, ∵△BCD≌△ACE, ∴∠AEC=∠BDC=110°, ∵∠DCE=90°,CD=CE, ∴∠CED=45°, 则∠AED=∠AEC﹣∠CED=65°,故②正确; ∵△BCD≌△ACE, ∴∠CAE=∠CBD=45°=∠CEF, ∵∠ECF=∠ACE, ∴△CEF∽△CAE, ∴, ∴CE2=CF•AC, 在等腰直角三角形CDE中,DE2=2CE2=2CF•AC,故③正确; 如图,过点D作DG⊥BC于G, ∵AB=3, ∴AC=BC=3, ∵AD=2BD, ∴BD=AB=, ∴DG=BG=1, ∴CG=BC﹣BG=3﹣1=2, 在Rt△CDG中,根据勾股定理得,CD==, ∵△BCD≌△ACE, ∴CE=, ∵CE2=CF•AC, ∴CF==, ∴AF=AC﹣CF=3﹣=,故④错误, 故答案为:①②③. 28.(2018•赤峰)如图,P是▱ABCD的边AD上一点,E、F分别是PB、PC的中点,若▱ABCD的面积为16cm2,则△PEF的面积(阴影部分)是 2 cm2. 解:∵▱ABCD的面积为16cm2, ∴S△PBC=S▱ABCD=8, ∵E、F分别是PB、PC的中点, ∴EF∥BC,且EF=BC, ∴△PEF∽△PBC, ∴=()2,即=, ∴S△PEF=2, 故答案为:2. 29.(2018•通辽)如图,在平面直角坐标系中,反比例函数y=(k>0)的图象与半径为5的⊙O交于M、N两点,△MON的面积为3.5,若动点P在x轴上,则PM+PN的最小值是 5 . 解:如图, 设点M(a,b),N(c,d), ∴ab=k,cd=k, ∵点M,N在⊙O上, ∴a2+b2=c2+d2=25, 作出点N关于x轴的对称点N'(c,﹣d), ∴S△OMN=k+(b+d)(a﹣c)﹣k=3.5, ∴ad﹣bc=7, ∴=7 ∴ac=, 同理:bd=, ∴ac﹣bc=﹣= [(c2+d2)﹣(a2+b2)]=0, ∵M(a,b),N'(c,﹣d), ∴MN'2=(a﹣c)2+(b+d)2=a2+b2+c2+d2﹣2ac+2bd=a2+b2+c2+d2﹣2(ac﹣bd)=50, ∴MN'=5, 故答案为:5. 30.(2018•黑龙江)如图,已知正方形ABCD的边长是4,点E是AB边上一动点,连接CE,过点B作BG⊥CE于点G,点P是AB边上另一动点,则PD+PG的最小值为 2 . 解:如图: 取点D关于直线AB的对称点D′.以BC中点O为圆心,OB为半径画半圆. 连接OD′交AB于点P,交半圆O于点G,连BG.连CG并延长交AB于点E. 由以上作图可知,BG⊥EC于G. PD+PG=PD′+PG=D′G 由两点之间线段最短可知,此时PD+PG最小. ∵D′C=4,OC′=6 ∴D′O= ∴D′G=2 ∴PD+PG的最小值为2 故答案为:2 31.(2018•哈尔滨)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,AB=OB,点E、点F分别是OA、OD的中点,连接EF,∠CEF=45°,EM⊥BC于点M,EM交BD于点N,FN=,则线段BC的长为 4 . 解:设EF=x, ∵点E、点F分别是OA、OD的中点, ∴EF是△OAD的中位线, ∴AD=2x,AD∥EF, ∴∠CAD=∠CEF=45°, ∵四边形ABCD是平行四边形, ∴AD∥BC,AD=BC=2x, ∴∠ACB=∠CAD=45°, ∵EM⊥BC, ∴∠EMC=90°, ∴△EMC是等腰直角三角形, ∴∠CEM=45°, 连接BE, ∵AB=OB,AE=OE ∴BE⊥AO ∴∠BEM=45°, ∴BM=EM=MC=x, ∴BM=FE, 易得△ENF≌△MNB, ∴EN=MN=x,BN=FN=, Rt△BNM中,由勾股定理得:BN2=BM2+MN2, ∴, x=2或﹣2(舍), ∴BC=2x=4. 故答案为:4. 32.(2018•齐齐哈尔)四边形ABCD中,BD是对角线,∠ABC=90°,tan∠ABD=,AB=20,BC=10,AD=13,则线段CD= 17或 . 解:当四边形ABCD是凸多边形时,作AH⊥BD于H,CG⊥BD于G, 设AH=3x,则BH=4x, 由勾股定理得,(3x)2+(4x)2=202, 解得,x=4, 则AH=12,BH=16, 在Rt△AHD中,HD==5, ∴BD=BH+HD=, ∵∠ABD+∠CBD=90°,∠BCH+∠CBD=90°, ∴∠ABD=∠CBH, ∴=,又BC=10, ∴BG=6,CG=8, ∴DG=BD﹣BG=15, ∴CD==17, 当四边形ABCD′是凹多边形时,CD′==, 故答案为:17或. 33.(2018•大庆)已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相交(点O为坐标原点),则m的取值范围为 m< . 解:把点(12,﹣5)代入直线y=kx得, ﹣5=12k, ∴k=﹣; 由y=﹣x平移平移m(m>0)个单位后得到的直线l所对应的函数关系式为y=﹣x+m(m>0), 设直线l与x轴、y轴分别交于点A、B,(如下图所示) 当x=0时,y=m;当y=0时,x=m, ∴A(m,0),B(0,m), 即OA=m,OB=m; 在Rt△OAB中, AB=, 过点O作OD⊥AB于D, ∵S△ABO=OD•AB=OA•OB, ∴OD•=×, ∵m>0,解得OD= 由直线与圆的位置关系可知<6,解得m<. 故答案为:m<. 34.(2018•长春)如图,在平面直角坐标系中,抛物线y=x2+ mx交x轴的负半轴于点A.点B是y轴正半轴上一点,点A关于点B的对称点A′恰好落在抛物线上.过点A′作x轴的平行线交抛物线于另一点C.若点A′的横坐标为1,则A′C的长为 3 . 解:当y=0时,x2+mx=0,解得x1=0,x2=﹣m,则A(﹣m,0), ∵点A关于点B的对称点为A′,点A′的横坐标为1, ∴点A的坐标为(﹣1,0), ∴抛物线解析式为y=x2+x, 当x=1时,y=x2+x=2,则A′(1,2), 当y=2时,x2+x=2,解得x1=﹣2,x2=1,则C(﹣2,1), ∴A′C的长为1﹣(﹣2)=3. 故答案为3. 35.(2018•沈阳)如图,△ABC是等边三角形,AB=,点D是边BC上一点,点H是线段AD上一点,连接BH、CH.当∠BHD=60°,∠AHC=90°时,DH= . 解:作AE⊥BH于E,BF⊥AH于F,如图, ∵△ABC是等边三角形, ∴AB=AC,∠BAC=60°, ∵∠BHD=∠ABH+∠BAH=60°,∠BAH+∠CAH=60°, ∴∠ABH=∠CAH, 在△ABE和△CAH中 , ∴△ABE≌△CAH, ∴BE=AH,AE=CH, 在Rt△AHE中,∠AHE=∠BHD=60°, ∴sin∠AHE=,HE=AH, ∴AE=AH•sin60°=AH, ∴CH=AH, 在Rt△AHC中,AH2+(AH)2=AC2=()2,解得AH=2, ∴BE=2,HE=1,AE=CH=, ∴BH=BE﹣HE=2﹣1=1, 在Rt△BFH中,HF=BH=,BF=, ∵BF∥CH, ∴△CHD∽△BFD, ∴===2, ∴DH=HF=×=. 故答案为. 36.(2018•大连)如图,矩形ABCD中,AB=2,BC=3,点E为AD上一点,且∠ABE=30°,将△ABE沿BE翻折,得到△A′BE,连接CA′并延长,与AD相交于点F,则DF的长为 6﹣2 . 解:如图作A′H⊥BC于H. ∵∠ABC=90°,∠ABE=∠EBA′=30°, ∴∠A′BH=30°, ∴A′H=BA′=1,BH=A′H=, ∴CH=3﹣, ∵△CDF∽△A′HC, ∴=, ∴=, ∴DF=6﹣2, 故答案为6﹣2. 37.(2018•阜新)甲、乙两人分别从A,B两地相向而行,他们距B地的距离s(km)与时间t(h)的关系如图所示,那么乙的速度是 3.6 km/h. 解:由题意,甲速度为6km/h.当甲开始运动时相距36km,两小时后,乙开始运动,经过2.5小时两人相遇. 设乙的速度为xkm/h 2.5×(6+x)=36﹣12 解得x=3.6 故答案为:3.6 38.(2018•盘锦)如图,已知Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,点M、N分别在线段AC、AB上,将△ANM沿直线MN折叠,使点A的对应点D恰好落在线段BC上,当△DCM为直角三角形时,折痕MN的长为 或 . 解:分两种情况: ①如图,当∠CDM=90°时,△CDM是直角三角形, ∵在Rt△ABC中,∠B=90°,∠A=60°,AC=2+4, ∴∠C=30°,AB=AC=, 由折叠可得,∠MDN=∠A=60°, ∴∠BDN=30°, ∴BN=DN=AN, ∴BN=AB=, ∴AN=2BN=, ∵∠DNB=60°, ②如图,当∠CMD=90°时,△CDM是直角三角形, 由题可得,∠CDM=60°,∠A=∠MDN=60°, ∴∠BDN=60°,∠BND=30°, ∴BD=DN=AN,BN=BD, 又∵AB=, ∴AN=2,BN=, 过N作NH⊥AM于H,则∠ANH=30°, ∴AH=AN=1,HN=, 由折叠可得,∠AMN=∠DMN=45°, ∴△MNH是等腰直角三角形, ∴HM=HN=, ∴MN=, 故答案为:或. 39.(2018•葫芦岛)如图,在矩形ABCD中,点E是CD的中点,将△BCE沿BE折叠后得到△BEF、且点F在矩形ABCD的内部,将BF延长交AD于点G.若=,则= . 解:连接GE, ∵点E是CD的中点, ∴EC=DE, ∵将△BCE沿BE折叠后得到△BEF、且点F在矩形ABCD的内部, ∴EF=DE,∠BFE=90°, 在Rt△EDG和Rt△EFG中 , ∴Rt△EDG≌Rt△EFG(HL), ∴FG=DG, ∵=, ∴设DG=FG=a,则AG=7a, 故AD=BC=8a, 则BG=BF+FG=9a, ∴AB==4a, 故==. 故答案为:. 40.(2018•盘锦)如图①,在矩形ABCD中,动点P从A出发,以相同的速度,沿A→B→C→D→A方向运动到点A处停止.设点P运动的路程为x,△PAB面积为y,如果y与x的函数图象如图②所示,则矩形ABCD的面积为 24 . 解:从图象②和已知可知:AB=4,BC=10﹣4=6, 所以矩形ABCD的面积是4×6=24, 故答案为:24.查看更多