2018届二轮复习导数的综合应用教案(全国通用)

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2018届二轮复习导数的综合应用教案(全国通用)

第2讲:《导数的综合应用》教案 一、教学目标 ‎1.应用导数讨论函数的单调性,并会根据函数的性质求参数范围.‎ ‎2.会利用导数解决某些实际问题.‎ 二、知识梳理 ‎1.已知函数单调性求参数值范围时,实质为恒成立问题.‎ ‎2.求函数单调区间,实质为解不等式问题,但解集一定为定义域的子集.‎ ‎3.实际应用问题:首先要充分理解题意,列出适当的函数关系式,再利用导数求出该函数的最大值或最小值,最后回到实际问题中,得出最优解.‎ 三、题型突破 题型一 讨论函数的单调性 例1 已知函数f(x)=x2e-ax (a>0),求函数在[1,2]上的最大值.‎ 变式迁移1 设a>0,函数f(x)=.‎ ‎(1)讨论f(x)的单调性;‎ ‎(2)求f(x)在区间[a,2a]上的最小值.‎ 题型二 用导数证明不等式 例2 已知f(x)=x2-aln x(a∈R),‎ ‎(1)求函数f(x)的单调区间;‎ ‎(2)求证:当x>1时,x2+ln xln 2-1且x>0时,ex>x2-2ax+1.‎ 题型三 实际生活中的优化问题 例3 某分公司经销某种品牌产品,每件产品的成本为3元,并且每件产品需向总公司交a元(3≤a≤5)的管理费,预计当每件产品的售价为x元(9≤x≤11)时,一年的销售量为(12-x)2万件.‎ ‎(1)求分公司一年的利润L(万元)与每件产品的售价x的函数关系式;‎ ‎(2)当每件产品的售价为多少元时,分公司一年的利润L最大,并求出L的最大值Q(a).‎ 变式迁移3 甲方是一农场,乙方是一工厂.由于乙方生产需占用甲方的资源,因此甲方有权向乙方索赔以弥补经济损失并获得一定净收入,在乙方不赔付甲方的情况下,乙方的年利润x(元)与年产量t(吨)满足函数关系x=2 000.若乙方每生产一吨产品必须赔付甲方S元(以下称S为赔付价格).‎ ‎(1)将乙方的年利润ω(元)表示为年产量t(吨)的函数,并求出乙方获得最大利润的年产量;‎ ‎(2)甲方每年受乙方生产影响的经济损失金额y=0.002t2(元),在乙方按照获得最大利润的产量进行生产的前提下,甲方要在索赔中获得最大净收入,应向乙方要求的赔付价格S是多少?‎ 四、针对训练 ‎(满分:90分)‎ 一、填空题(每小题6分,共48分)‎ ‎1.已知曲线C:y=2x2-x3,点P(0,-4),直线l过点P且与曲线C相切于点Q,则点Q的横坐标为________.‎ ‎2.函数f(x)=x3+ax2+3x-9,已知f(x)在x=-3时取得极值,则a=________.‎ ‎3.函数f(x)在定义域R内可导,若f(x)=f(2-x),且当x∈(-∞,1)时,(x-1)f′(x)<0,则a=f(0)、b=f()、c=f(3)的大小关系为________________.‎ ‎4.函数f(x)=-x3+x2+tx+t在(-1,1)上是增函数,则t的取值范围是________.‎ ‎5.若函数f(x)=,且00,试比较f(x)与g(x)的大小.‎ 五、参考答案 二、知识梳理 ‎1.00),‎ ‎∴f′(x)=2xe-ax+x2·(-a)e-ax=e-ax(-ax2+2x).‎ 令f′(x)>0,即e-ax(-ax2+2x)>0,得02时,f(x)在[1,2]上是减函数,‎ ‎∴f(x)max=f(1)=e-a.‎ ‎②当1≤≤2,即1≤a≤2时,f(x)在上是增函数,在上是减函数,∴f(x)max=f=4a-2e-2.‎ ‎③当>2,即02时,f(x)的最大值为e-a.‎ 变式迁移1 解 (1)函数f(x)的定义域为(0,+∞),‎ f′(x)=a·(a>0),‎ 由f′(x)=a·>0,得0e.‎ 故f(x)在(0,e)上单调递增,在(e,+∞)上单调递减.‎ ‎(2)∵f(x)在(0,e)上单调递增,在(e,+∞)上单调递减,‎ ‎∴f(x)在[a,2a]上的最小值[f(x)]min=min{f(a),f(2a)}.‎ ‎∵f(a)-f(2a)=ln,‎ ‎∴当02时,[f(x)]min=.‎ 例2 解题导引 利用导数解决不等式问题的主要方法就是构造函数,通过研究函数的性质进而解决不等式问题.‎ ‎(1)解 f′(x)=x-=(x>0),‎ 若a≤0时,f′(x)>0恒成立,‎ ‎∴函数f(x)的单调增区间为(0,+∞).‎ 若a>0时,令f′(x)>0,得x>,‎ ‎∴函数f(x)的单调增区间为(,+∞),减区间为(0,).‎ ‎(2)证明 设F(x)=x3-(x2+ln x),‎ 故F′(x)=2x2-x-.‎ ‎∴F′(x)=.∵x>1,∴F′(x)>0.‎ ‎∴F(x)在(1,+∞)上为增函数.‎ 又F(x)在(1,+∞)上连续,F(1)=>0,‎ ‎∴F(x)>在(1,+∞)上恒成立.‎ ‎∴F(x)>0.‎ ‎∴当x>1时,x2+ln xln 2-1时,‎ g′(x)最小值为g′(ln 2)=2(1-ln 2+a)>0.‎ 于是对任意x∈R,都有g′(x)>0,‎ 所以g(x)在R内单调递增,‎ 于是当a>ln 2-1时,‎ 对任意x∈(0,+∞),‎ 都有g(x)>g(0).‎ 而g(0)=0,从而对任意x∈(0,+∞),都有g(x)>0,‎ 即ex-x2+2ax-1>0,‎ 故ex>x2-2ax+1.‎ 例3 解 (1)分公司一年的利润L(万元)与售价x的函数关系式为L=(x-3-a)(12-x)2,x∈[9,11].‎ ‎(2)L′(x)=(12-x)2-2(x-3-a)(12-x)=(12-x)(18+2a-3x).‎ 令L′=0,得x=6+a或x=12(不合题意,舍去).‎ ‎∵3≤a≤5,∴8≤6+a≤.‎ 在x=6+a两侧L′的值由正变负.‎ ‎∴①当8≤6+a<9,即3≤a<时,Lmax=L(9)=(9-3-a)(12-9)2=9(6-a).‎ ‎②当9≤6+a≤,即≤a≤5时,Lmax=L(6+a)=(6+a-3-a)[12-(6+a)]2=4(3-a)3.‎ 所以Q(a)= 综上,若3≤a<,则当每件售价为9元时,分公司一年的利润L最大,最大值Q(a)=9(6-a)(万元);‎ 若≤a≤5,则当每件售价为(6+a)元时,分公司一年的利润L最大,最大值Q(a)=4(3-a)3(万元).‎ 变式迁移3 解 (1)因为赔付价格为S元/吨,‎ 所以乙方的实际年利润为ω=2 000-St.‎ 由ω′=-S=,‎ 令ω′=0,得t=t0=()2.‎ 当t0;当t>t0时,ω′<0.‎ 所以当t=t0时,ω取得最大值.‎ 因此乙方获得最大利润的年产量为()2吨.‎ ‎(2)设甲方净收入为v元,则v=St-0.002t2.‎ 将t=()2代入上式,得到甲方净收入v与赔付价格S之间的函数关系式:‎ v=-.‎ 又v′=-+=,‎ 令v′=0,得S=20.‎ 当S<20时,v′>0;当S>20时,v′<0,‎ 所以S=20时,v取得最大值.‎ 因此甲方向乙方要求赔付价格S=20元/吨时,可获得最大净收入.‎ 四、针对训练 ‎1.-1 2.5 3.cb 解析 f′(x)=,令g(x)=xcos x-sin x,‎ 则g′(x)=-xsin x+cos x-cos x=-xsin x,‎ ‎∵0b.‎ ‎6.d 解析 如图所示,为圆木的横截面,‎ 由b2+h2=d2,‎ ‎∴bh2=b(d2-b2).‎ 设f(b)=b(d2-b2),‎ ‎∴f′(b)=-3b2+d2.‎ 令f′(b)=0,由b>0,‎ ‎∴b=d,且在(0,d)上f′(b)>0,在[d,d]上f′(b)<0.‎ ‎∴函数f(b)在b=d处取极大值,也是最大值,即抗弯强度最大,此时长h=d.‎ ‎7.300‎ 解析 设长为x m,则宽为(20-x)m,仓库的容积为V,则V=x(20-x)·3=-3x2+60x,V′=-6x+60,‎ 令V′=0得x=10.‎ 当00;当x>10时,V′<0,‎ ‎∴x=10时,V最大=300 (m3).‎ ‎8.(-1,0]‎ 解析 f′(x)=≥0,解得-1≤x≤1.‎ 由已知得(m,2m+1)⊆[-1,1],即,解得-10时,f′(x)=3kx2-6x=3kx(x-).‎ ‎∴f(x)的单调增区间为(-∞,0),(,+∞),单调减区间为(0,).………………(6分)‎ ‎(2)当k=0时,函数f(x)不存在极小值.当k>0时,依题意f()=-+1>0,‎ 即k2>4,由条件k>0,‎ ‎∴k的取值范围为(2,+∞).…………………………………………………………(12分)‎ ‎10.解 (1)设隔热层厚度为x cm,由题设,‎ 每年能源消耗费用为C(x)=,……………………………………………………(2分)‎ 再由C(0)=8,得k=40,‎ 因此C(x)=,………………………………………………………………………(4分)‎ 而建造费用为C1(x)=6x.…………………………………………………………………(6分)‎ 最后得隔热层建造费用与20年的能源消耗费用之和为 f(x)=20C(x)+C1(x)=20×+6x ‎=+6x (0≤x≤10).………………………………………………………………(8分)‎ ‎(2)f′(x)=6-,令f′(x)=0,‎ 即=6,解得x=5,x=-(舍去).…………………………………………(10分)‎ 当00,………………………………………………………………(12分)‎ 故x=5是f(x)的最小值点,‎ 对应的最小值为f(5)=6×5+=70.‎ 当隔热层修建5 cm厚时,总费用达到最小值70万元.……………………………(14分)‎ ‎11.解 (1)f(x)=ln x的图象与x轴的交点坐标是(1,0),‎ 依题意,得g(1)=a+b=0.①……………………………………………………………(2分)‎ 又f′(x)=,g′(x)=a-,‎ 且f(x)与g(x)在点(1,0)处有公共切线,‎ ‎∴g′(1)=f′(1)=1,即a-b=1.②……………………………………………………(4分)‎ 由①②得a=,b=-.…………………………………………………………………(6分)‎ ‎(2)令F(x)=f(x)-g(x),则 F(x)=ln x-(x-)=ln x-x+,‎ ‎∴F′(x)=--……………………………………………………………………(8分)‎ ‎=-(-1)2≤0.‎ ‎∴F(x)在(0,+∞)上为减函数.………………………………………………………(10分)‎ 当0F(1)=0,即f(x)>g(x);……………………………………………(12分)‎ 当x=1时,F(1)=0,即f(x)=g(x);…………………………………………………(14分)‎ 当x>1时,F(x)g(x);‎ x=1时,f(x)=g(x);‎ x>1时f(x)
查看更多

相关文章