大连市数学中考25几何压轴题阅读材料专项精选25题

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

大连市数学中考25几何压轴题阅读材料专项精选25题

大连市数学中考25几何压轴题-阅读材料专项精选25题 ‎1.阅读下面材料:‎ 小明遇到这样一个问题: 如图1,在锐角△ABC中,AD、BE、CF分别为△ABC的高,求证:∠AFE=∠ACB. 小明是这样思考问题的:如图2,以BC为直径作半⊙O,则点F、E在⊙O上, ∠BFE+∠BCE=180°,所以∠AFE=∠ACB. 请回答:若∠ABC=40°,则∠AEF的度数是 . 参考小明思考问题的方法,解决问题: 如图3,在锐角△ABC中,AD、BE、CF分别为△ABC的高,求证:∠BDF=∠CDE.‎ ‎ 2.阅读下面材料:‎ 小明遇到这样一个问题:如图1,在△ABC中,DE∥BC分别交AB于D,交AC于E.已知CD⊥BE,CD=3,BE=5,求BC+DE的值. 小明发现,过点E作EF∥DC,交BC延长线于点F,构造△BEF,经过推理和计算能够使问题得到解决(如图2). 请回答:BC+DE的值为 . 参考小明思考问题的方法,解决问题: 如图3,已知▱ABCD和矩形ABEF,AC与DF交于点G,AC=BF=DF,求∠AGF的度数.‎ ‎3.阅读下面材料: 小明遇到这样一个问题:如图1,在△ABC中,点D在线段BC上,∠BAD=75°,∠CAD=30°,AD=2,BD=2DC,求AC的长. 小明发现,过点C作CE∥AB,交AD的延长线于点E,通过构造△ACE,经过推理和计算能够使问题得到解决(如图2). (1)请回答:∠ACE的度数为 ,AC的长为 . (2)参考小明思考问题的方法,解决问题: 如图3,在四边形ABCD中,∠BAC=90°,∠CAD=30°,∠ADC=75°,AC与BD交于点E,AE=2,BE=2ED,求AC的长.‎ ‎4.阅读下面材料:‎ 小明遇到这样一个问题:如图1,在等边三角形ABC内有一点P,且PA=3,PB=4,PC=5,求∠APB度数. 小明发现,利用旋转和全等的知识构造△AP′C,连接PP′,得到两个特殊的三角形,从而将问题解决(如图2). 请回答:图1中∠APB的度数等于 ,图2中∠PP′C的度数等于 . 参考小明思考问题的方法,解决问题: 如图3,在平面直角坐标系xOy中,点A坐标为(-3,1),连接AO.如果点B是x轴上的一动点,以AB为边作等边三角形ABC.当C(x,y)在第一象限内时,求y与x之间的函数表达式. ‎ ‎5.(1)【问题发现】小明遇到这样一个问题: 如图1,△ABC是等边三角形,点D为BC的中点,且满足∠ADE=60°,DE交等边三角形外角平分线CE所在直线于点E,试探究AD与DE的数量关系.小明发现,过点D作DF∥AC,交AC于点F,通过构造全等三角形,经过推理论证,能够使问题得到解决,请直接写出AD与DE的数量关系: ; ‎ ‎ (2)【类比探究】如图2,当点D是线段BC上(除B,C外)任意一点时(其它条件不变),试猜想AD与DE之间的数量关系,并证明你的结论. (3)【拓展应用】当点D在线段BC的延长线上,且满足CD=BC(其它条件不变)时,请直接写出△ABC与△ADE的面积之比.‎ ‎6.阅读下面材料: 小明遇到这样一个问题:如图1,在△ABC中,D为BC中点,E、F分别为AB、AC上一点,且ED⊥DF,求证:BE+CF>EF. 小明发现,延长FD到点H,使DH=FD,连结BH、EH,构造△BDH和△EFH,通过证明△BDH与△CDF全等、△EFH为等腰三角形,利用△BEH使问题得以解决(如图2). 参考小明思考问题的方法,解决问题: 如图3,在矩形ABCD中,O为对角线AC中点,将矩形ABCD翻折,使点B恰好与点O重合,EF为折痕,猜想EF、AE、FC之间的数量关系?并证明你的猜想.‎ ‎7.阅读下面材料: 小明遇到这样一个问题:如图1,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB,试判断BC和AC、AD之间的数量关系. 小明发现,利用轴对称做一个变化,在BC上截取CA′=CA,连接DA′,得到一对全等的三角形,从而将问题解决(如图2). 请回答: (1)在图2中,小明得到的全等三角形是△ ≌△ ; (2)BC和AC、AD之间的数量关系是 . 参考小明思考问题的方法,解决问题: 如图3,在四边形ABCD中,AC平分∠BAD,BC=CD=10,AC=17,AD=9.求AB的长. ‎ ‎8.阅读下面材料: 小明遇到这样一个问题:如图1,在边长为a(a>2)的正方形ABCD各边上分别截取AE=BF=CG=DH=1,当∠AFQ=∠BGM=∠CHN=∠DEP=45°时,求正方形MNPQ的面积.小明发现:分别延长QE,MF,NG,PH,交FA,GB,HC,ED的延长线于点R,S,T,W,可得△RQF,△SMG,△TNH,△WPE是四个全等的等腰直角三角形(如图2) 请回答: (1)若将上述四个等腰直角三角形拼成一个新的正方形(无缝隙,不重叠),则这个新的正方形的边长为__________; (2)求正方形MNPQ的面积. 参考小明思考问题的方法,解决问题: 如图3,在等边△‎ ABC各边上分别截取AD=BE=CF,再分别过点D,E,F作BC,AC,AB的垂线,得到等边△RPQ,若,则AD的长为__________.‎ ‎9.阅读下面材料: 小明遇到这样一个问题:如图1,△ABO和△CDO均为等腰直角三角形,∠AOB=∠COD=90°.若△BOC的面积为1,试求以AD、BC、OC+OD的长度为三边长的三角形的面积. 小明是这样思考的:要解决这个问题,首先应想办法移动这些分散的线段,构造一个三角形,再计算其面积即可.他利用图形变换解决了这个问题,其解题思路是延长CO到E,使得OE=CO,连接BE,可证△OBE≌△OAD,从而得到的△BCE即是以AD、BC、OC+OD的长度为三边长的三角形(如图2). 请你回答:图2中△BCE的面积等于______. 请你尝试用平移、旋转、翻折的方法,解决下列问题: 如图3,已知△ABC,分别以AB、AC、BC为边向外作正方形ABDE、AGFC、BCHI,连接EG、FH、ID. (1)在图3中利用图形变换画出并指明以EG、FH、ID的长度为三边长的一个三角形(保留画图痕迹); (2)若△ABC的面积为1,则以EG、FH、ID的长度为三边长的三角形的面积等于______. ‎ 10. 阅读下面材料:  小聪遇到这样一个有关角平分线的问题:如图1,在△ABC中,  ∠A=2∠B,CD平分∠ACB,AD=2.2,AC=3.6 求BC的长.‎ 小聪思考:因为CD平分∠ACB,所以可在BC边上取点E,使EC=AC,连接DE. 这样很容易得到△DEC≌△DAC,经过推理能使问题得到解决(如图2).‎ ‎ 请回答:(1)△BDE是_________三角形. (2)BC的长为__________. 参考小聪思考问题的方法,解决问题: 如图3,已知△ABC中,AB=AC, ∠A=20°, BD平分 ‎∠ABC,BD=2.3 ,BC=2,求AD的长.‎ ‎1.阅读下面材料: 小炎遇到这样一个问题:如图1,点E、F分别在正方形ABCD的边BC,CD上,∠EAF=45°,连结EF,则EF=BE+DF,试说明理由. 小炎是这样思考的:要想解决这个问题,首先应想办法将这些分散的线段相对集中.她先后尝试了翻折、旋转、平移的方法,最后发现线段AB,AD是共点并且相等的,于是找到解决问题的方法.她的方法是将△ABE绕着点A逆时针旋转90°得到△ADG,再利用全等的知识解决了这个问题(如图2).‎ 参考小炎同学思考问题的方法,解决下列问题: (1)如图3,四边形ABCD中,AB=AD,∠BAD=90°点E,F分别在边BC,CD上,∠EAF=45°.若∠B,∠D都不是直角,则当∠B与∠D满足         关系时,仍有EF=BE+DF; (2)如图4,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°,若BD=1, EC=2,求DE的长.‎ ‎2.阅读下面文字,解决下列问题 ‎(1)问题背景 宇昕同学遇到这样一个问题:如图1,在正方形ABCD中,点E,F分别为BC,CD上的点,且∠EAF=45°,求证:BE+DF=EF.‎ 宇昕是这样思考的:要想解决这个问题,首先应想办法将这些分散的线段集中到同一条线段上.他先后尝试了平移、翻折、旋转的方法,发现通过旋转可以解决此问题.‎ 他的方法是将△ADF绕点A顺时针旋转90°得到△ABG(如图2),此时GE即是DF+BE.‎ 请回答:在图2中,∠GAF的度数是 、△AGE≌△ .‎ ‎(2)拓展研究 如图3,若E,F分别在四边形ABCD的边BC,CD上,∠B+∠D=180°,AB=AD,要使(1)中线段BE,EF,FD的等量关系仍然成立,则∠EAF与∠BAD应满足的关系是 ;‎ ‎(3)构造运用 运用(1)(2)解答中所积累的经验和知识,完成下面问题:如图4,在四边形ABCD中,∠ABC=90°,∠CAB=∠CAD=22.5°,点E在AB上,且∠DCE=67.5°,DE⊥AB于点E,若AE=,试求线段AD,BE的长.‎
查看更多

相关文章

您可能关注的文档