- 2021-04-13 发布 |
- 37.5 KB |
- 17页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高考数学专题复习:命题及其关系同步训练题
命题及其关系同步训练题 一、选择题 1、命题“对顶角相等”的逆命题、否命题、逆否命题中,真命题是( ) (A)上述四个命题 (B)原命题与逆命题 (C)原命题与逆否命题 (D)原命题与否命题 2、命题①12是4和3的公倍数;命题②相似三角形的对应边不一定相等;命题③三角形中位线平行且等于底边长的一半;命题④等腰三角形的底角相等.上述4个命题中,是简单命题的只有( ). A.①,②,④ B.①,④ C.②,④ D.④ 3、若命题是的逆命题是,命题的否命题是,则是的( ) A.逆命题 B.逆否命题 C.否命题 D.以上判断都不对 4、已知命题;,则下列选项中正确的是( ) A.或 为真,且为真,非为假; B.或 为真,且为假,非为真; C.或 为假,且为假,非为假; D.或 为真,且为假,非为假 5、命题“若则”的逆否命题是( ) (A)若则 (B)若则 (C) 若则 (D)若则 6、命题“两条对角线相等的四边形是矩形”是命题“矩形是两条对角线相等的四边形”的( ) (A)逆命题 (B)否命题 (C)逆否命题 (D)无关命题 7、下列句子或式子是命题的有( )个. ①语文和数学;②;③;④垂直于同一条直线的两条直线必平行吗?⑤一个数不是合数就是质数;⑥把门关上. A.1个 B.3个 C.5个 D.2个 8、用反证法证明命题“是无理数”时,假设正确的是( ) (A)假设是有理数 (B)假设是有理数 (C)假设是有理数 (D)假设是有理数 9、原命题为“圆内接四边形是等腰梯形”,则下列说法正确的是( ) (A)原命题是真命题 (B)逆命题是假命题 (C) 否命题是真命题 (D)逆否命题是真命题 10、命题“若”的否定形式是( ) (A) (B) (C) (D) 11、与命题“能被6整除的整数,一定能被3整除”等价的命题是( ) (A)能被3整除的整数,一定能被6整除 (B)不能被3整除的整数,一定不能被6整除 (C)不能被6整除的整数,一定不能被3整除 (D)不能被6整除的整数,不一定能被3整除 12、下列说法中,不正确的是( ) (A)“若”与“若”是互逆的命题 (B)“若非“与“若”是互否的命题 (C)“若非”与“若”是互否的命题 (D)“若非”与“若”是互为逆否的命题 13、以下说法错误的是( ) (A) 如果一个命题的逆命题为真命题,那么它的否命题也必为真命题 (B)如果一个命题的否命题为假命题,那么它本身一定为真命题 (C)原命题、否命题、逆命题、逆否命题中,真命题的个数一定为偶数 (D)一个命题的逆命题、否命题、逆否命题可以同为假命题 14、下列四个命题: ⑴“若则实数均为0”的逆命题; ⑵ “相似三角形的面积相等“的否命题 ; ⑶ “”逆否命题; ⑷ “末位数不是0的数可被3整除”的逆否命题 ,其中真命题为( ) (A) ⑴ ⑵ (B)⑵ ⑶ (C)⑴ ⑶ (D)⑶ ⑷ 15、命题“若则是等边三角形”的否命题是( ) (A)假命题 (B)与原命题同真同假 (C)与原命题的逆否命题同真同假 (D)与原命题的逆命题同真同假 二、填空题 16、在命题的逆命题、否命题、逆否命题中,假命题的个数为 . 17、如果命题“或”与命题“非”都是真命题,那么为 命题. 18、命题“若,则或”的逆否命题是 ,是 命题. 19、下列命题:①“若,则,互为倒数”的逆命题;②4边相等的四边形是正方形的否命题;③“梯形不是平行四边形”的逆否命题;④“则”的逆命题,其中真命题是 . 20、命题“若,则或”的逆否命题是 . 21、用反证法证明命题“三角形的内角中至少有一个钝角”时反设是 . 22、已知命题,,由命题,构成的复合命题“或”是 ,是 命题;“且”是 ,是 命题;“非”是 ,是 命题. 23、命题“都是偶数,则是偶数”的逆否命题是 . 三、解答题 24、设命题为“若,则关于的方程有实数根”,试写出它的否命题、逆命题和逆否命题,并分别判断它们的真假. 25、指出下列复合命题构成的形式及构成它的简单命题,并判断复合命题的真假. (1);(2);(3)1是质数或合数;(4)菱形对角线互相垂直平分. 26、若,写出命题“”有两个相异实根的逆命题、否命题、逆否命题,并判断它们的真假. 27、已知下列三个方程至少有一个方程有实根,求实数的取值范围. 28、如果,是2个简单命题,试列出下列9个命题的直值表:(1)非;(2)非;(3)或;(4)且;(5)“或”的否定;(6)“且”的否定;(7)“非或非”;(8)“非且非”;(9)“非‘非’”. 四、选择题 29、设,,那么是的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件 30、设原命题“若则”真而逆命题假,则是的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件 31、设,则的一个必要不充分条件是( ) A. B. C. D. 32、如果是的必要不充分条件,是的充分必要条件,是的充分不必要条件,那么是的( ) A.必要不充分条件 B.充分不必要条件 C.充要条件 D.既不充分也不必要条件 33、设集合,,那么“或”是“”的( ) A.充分条件但非必要条件 B.必要条件但非充分条件 C.充分必要条件 D.非充分条件,也非必要条件 34、若是的充分不必要条件,则是的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 35、条件甲:的两根,,,条件乙:且,则甲是乙的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 36、命题“”的一个必要不充分条件是( ) A. B. C. D. 37、已知条件:“”;条件:“,,”,则是的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件 38、三个数不全为零的充要条件是( ) A.都不是零 B.中至多一个是零 C.中只有一个为零 D.中至少一个不是零 39、设:“中至少有一个等于”“”;: “”“”,那么,的真假是( ) A.真真 B.真假 C.假真 D.假假 40、已知为非零实数,为某一实数,有命题:,:,则是的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件 41、设,,,,,均为非零实数,不等式和的解集分别为和,那么“”是“”的( ) A.充分非必要条件 B.必要非充分条件 C.充要条件 D.既非充分也非必要条件 五、填空题 42、从“充分条件”“必要条件”中选出适当的一种填空: (1)“有实根”是“”的_____________; (2)“”是“”的_____________. 43、已知是的充分条件,是的充要条件,是的充分条件,是是必要条件,则是的_____________条件. 44、从“”“”与 “”中选出适当的符号填空(为全集,为的子集): (1)___________. (2)___________. 45、是的___________条件. 46、设是非空集合,则是的_________条件. 47、从“充分而不必要条件”,“必要而不充分条件”或“充要条件”中选出适当的一种填空: (1)是的 ; (2)是的 ; (3)是的 ; (4)是的 ; (5)“”是“”的 ; (6)“”是“”的 ; (7)“”是“”的 ; (8)“四边形的对角线互相垂直平分”是“四边形为矩形”的 ; (9)“四边形内接于圆”是“四边形对角互补”的 ; (10)设,的半径为,,则“”是“两圆外切”的 . 六、解答题 48、已知,,若是的必要而不充分条件,求实数的取值范围. 49、用多种方法判断“”是“”的什么条件. 50、是否存在实数,使“”是“”的充分条件?如果存在,求出的取值范围.是否存在实数,使“”是“”的必要条件.如果存在,求出的取值范围. 51、已知,,试判断是的什么条件? 52、设,, ,求使的充要条件. 53、求关于的一元二次不等式,对一切都成立的充要条件是什么? 54、求方程至少有一个负根的充要条件. 55、求三个实数不全为零的充要条件. 56、设集合,,写出的一个充分不必要条件. 57、“且”是“且”的充要条件吗?若是,请说明理由;若不是,请给出“且”的充要条件. 58、设全集为,在下列条件中,哪些是的充要条件? (1); (2); (3). 以下是答案 一、选择题 1、C 2、A 3、B 4、D 5、D 6、A 7、A 8、D 9、C 10、B 11、B 12、B 13、B 14、C 15、D 二、填空题 16、3. 17、真 18、若且,则,真 19、①,②,③ 20、若且,则. 21、假设三角形的内角中没有钝角. 22、或:或,为真; 且且,为假; 非或,为假. 23、不是偶数则不都是偶数. 三、解答题 24、否命题为“若,则关于的方程没有实数根”; 逆命题为“若关于的方程有实数根,则” ; 逆否命题“若关于的方程没有实数根,则”. 由方程的判别式得,即,方程有实根. 使,方程有实数根, 原命题为真,从而逆否命题为真. 但方程有实根,必须,不能推出,故逆命题为假. 25、(1)这个命题是“或”形式,:,:. 真假,或为真命题. (2)这个命题是“非”形式,, 为真,非是假命题. (3)这个命题形式是或的形式,其中是命 数,是质数. 因为假假,所以“或”为假命题. (4)这个命题是“且”形式,菱形对角线互相垂直;菱形对角线互相平分. 因为真真,所以“且”为真命题. 26、逆命题 :,假; 否命题:()没有实数根,假; 逆否命题:,真. 27、. 28、 非 非 或 且 “或”的否定 “且”的否定 “非或非” “非且非” “非‘非’” 真 真 假 假 真 真 假 假 假 假 真 真 假 假 真 真 假 假 真 真 假 真 假 真 真 假 真 假 假 真 真 假 假 假 假 真 真 假 假 真 真 真 真 假 四、选择题 29、A 30、A 31、A 32、A 33、B 34、B 35、C 36、B 37、B 38、D 39、B 40、B 41、D 五、填空题 42、(1)必要条件 (2)充分条件 43、必要 44、 45、必要不充分 46、必要不充分 47、(1)充分不必要条件 (2)必要不充分条件 (3)充分不必要条件 (4)必要不充分条件 (5)充分不必要条件 (6)充分不必要条件 (7)必要而不充分条件 (8)既不充分也不必要条件 (9)充要条件 (10)充要条件. 六、解答题 48、解:由得. 所以“”:. 由得,所以 “”:. 由是的必要而不充分条件知 故的取值范围为. 49、必要不充分条件 50、时,“”是“”的充分条件;不存在实数,使“”是“”的必要条件. 51、充分不必要条件 52、. 53、. 54、. 55、中至少有一个不是零. 56、,,中之一即可. 57、不是充要条件;. 58、三者都是查看更多