2019年高考数学考纲解读与热点难点突破专题24函数与方程思想、数形结合思想(热点难点突破)理(含解析)

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2019年高考数学考纲解读与热点难点突破专题24函数与方程思想、数形结合思想(热点难点突破)理(含解析)

函数与方程思想、数形结合思想 ‎1.已知定义在R上的函数f(x)的导函数为f′(x),且f(x)+f′(x)>1,设a=f(2)-1,b=e[f(3)-1],则a,b的大小关系为(  )‎ A.ab C.a=b D.无法确定 答案 A 解析 令g(x)=exf(x)-ex,‎ 则g′(x)=ex[f(x)+f′(x)-1]>0,‎ 即g(x)在R上为增函数.‎ 所以g(3)>g(2),‎ 即e3f(3)-e3>e2f(2)-e2,‎ 整理得e[f(3)-1]>f(2)-1,即a0,b>0)的右焦点F作直线y=-x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为(  )‎ A. B.2 C. D. 答案 C 解析 设F(c,0),则直线AB的方程为y=(x-c),代入双曲线渐近线方程y=-x,得A.由=2,可得B,把B点坐标代入-=1,得-=1,‎ ‎∴c2=5a2,‎ ‎∴离心率e==.‎ ‎5.记实数x1,x2,…,xn中最小数为min{x1,x2,…,xn},则定义在区间[0,+∞)上的函数f(x)=min{x2+1,x+3,13-x}的最大值为(  )‎ A.5 B.6 C.8 D.10‎ 答案 C 解析 在同一坐标系中作出三个函数y1=x2+1,y2=x+3,y3=13-x的图象如图.‎ 7‎ 由图可知,在实数集R上,min{x2+1,x+3,13-x}为y2=x+3上A点下方的射线,抛物线AB之间的部分,线段BC与直线y3=13-x在点C下方的部分的组合体.显然,在区间[0,+∞)上,在C点时,y=min{x2+1,x+3,13-x}取得最大值.‎ 解方程组得点C(5,8).‎ 所以f(x)max=8.‎ ‎6.已知函数f(x)=|lg(x-1)|,若1<a<b且f(a)=f(b),则a+2b的取值范围为(  )‎ A.(3+2,+∞) B.[3+2,+∞)‎ C.(6,+∞) D.[6,+∞)‎ 答案 C 解析 由图象可知b>2,1<a<2,‎ ‎∴-lg(a-1)=lg(b-1),‎ 则a=,‎ 则a+2b=+2b===2(b-1)++3,‎ 由对勾函数的性质知,当b∈时,f(b)=2(b-1)++3单调递增,‎ ‎∵b>2,‎ ‎∴a+2b=+2b>6.‎ ‎7.已知函数f(x)=若不等式f(x)≥mx恒成立,则实数m的取值范围为(  )‎ A.[-3-2,-3+2]‎ B.[-3+2,0]‎ C.[-3-2,0]‎ D.(-∞,-3-2]∪[-3+2,+∞)‎ 答案 C 7‎ 解析 函数f(x)及y=mx的图象如图所示,由图象可知,当m>0时,不等式f(x)≥mx不恒成立,设过原点的直线与函数f(x)=x2-3x+2(x<1)相切于点A(x0,x-3x0+2),因为f′(x0)=2x0-3,所以该切线方程为y-(x-3x0+2)=(2x0-3)(x-x0),因为该切线过原点,所以-(x-3x0+2)=-x0(2x0-3),解得x0=-,即该切线的斜率k=-2-3.由图象得-2-3 ≤m≤0.故选C.‎ ‎8.已知函数f(x)=+x+sin x,若存在x∈[-2,1],使得f(x2+x)+f(x-k)<0成立,则实数k的取值范围是(  )‎ A.(-1,+∞) B.(3,+∞)‎ C.(0,+∞) D.(-∞,-1)‎ 答案 A 解析 由题意知函数f(x)=+x+sin x的定义域为R,f(-x)=+(-x)+sin(-x)=-=-f(x),即函数f(x)为奇函数,且f′(x)=+1+cos x>0在R上恒成立,即函数f(x)在R上单调递增.‎ 若∃x0∈[-2,1],使得f(x+x0)+f(x0-k)<0成立,‎ 即f(x+x0)<-f(x0-k),‎ 所以f(x+x0)x+2x0,令g(x)=x2+2x,x∈[-2,1].‎ 则k>g(x)min=g(-1)=-1故实数k的取值范围是(-1,+∞).‎ ‎9.已知正四棱锥的体积为,则正四棱锥的侧棱长的最小值为________.‎ 答案 2 解析 如图所示,设正四棱锥的底面边长为a,高为h.则该正四棱锥的体积V=a2h=,‎ 7‎ 故a2h=32,即a2=.‎ 则其侧棱长为l==.‎ 令f(h)=+h2,则f′(h)=-+2h=,‎ 令f′(h)=0,解得h=2. ‎ 当h∈(0,2)时,f′(h)<0,f(h)单调递减;当h∈(2,+∞)时,f′(h)>0,f(h)单调递增,‎ 所以当h=2时,f(h)取得最小值f(2)=+22=12,‎ 故lmin==2.‎ ‎10.若函数f(x)=|2x-2|-b有两个零点,则实数b的取值范围是________.‎ 答案  (0,2)‎ 解析 由f(x)=|2x-2|-b有两个零点,‎ 可得|2x-2|=b有两个不等的实根,‎ 从而可得函数y1=|2x-2|的图象与函数y2=b的图象有两个交点,如图所示.‎ 结合函数的图象,可得00),若两条曲线没有公共点,则r的取值范围是______________.‎ 答案 (0,1)∪ 解析 方法一 联立C1和C2的方程,消去x,‎ 得到关于y的方程-y2+2y+10-r2=0,①‎ 方程①可变形为r2=-y2+2y+10, ‎ 7‎ 把r2=-y2+2y+10看作关于y的函数.‎ 由椭圆C1可知,-2≤y≤2,‎ 因此,求使圆C2与椭圆C1有公共点的r的集合,等价于在定义域为y∈[-2,2]的情况下,求函数r2=f(y)=-y2+2y+10的值域.‎ 由f(-2)=1,f(2)=9,f =,‎ 可得f(y)的值域为,即r∈,‎ 它的补集就是圆C2与椭圆C1没有公共点的r的集合,因此,两条曲线没有公共点的r的取值范围是(0,1)∪.‎ 则又r>0,解得00,‎ 故φ(x)在上单调递增,‎ 所以φ(x)≥φ=->0.‎ 因此g′(x)>0,‎ 故g(x)在上单调递增,‎ 则g(x)≥g==2-,‎ 所以a-=2-, ‎ 解得a=2, ‎ 所以a的取值集合为{2}.‎ ‎ ‎ 7‎
查看更多

相关文章