- 2021-06-05 发布 |
- 37.5 KB |
- 6页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
专题08+函数与方程(押题专练)-2018年高考数学(理)一轮复习精品资料
专题08+函数与方程 1. “a<-2”是“函数f(x)=ax+3在区间[-1,2]上存在零点x0”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 2.下列函数图像与x轴均有公共点,其中能用二分法求零点的是( ) 解析 能用二分法求零点的函数必须在含零点的区间(a,b)内连续,并且有f(a)·f(b)<0.A、B、D中函数不符合. 答案C 3.函数f(x)=2x--a的一个零点在区间(1,2)内,则实数a的取值范围是 ( ). A.(1,3) B.(1,2) C.(0,3) D.(0,2) 解析 由条件可知f(1)f(2)<0,即(2-2-a)(4-1-a)<0,即a(a-3)<0,解之得00可得其中一个零点x0∈______,第二次应计算________. 解析∵f(x)=x3+3x-1是R上的连续函数,且f(0)<0,f(0.5)>0,则f(x)在x∈(0,0.5)上存在零点,且第二次验证时需验证f(0.25)的符号. 答案(0,0.5) f(0.25) 8.函数f(x)=则函数y=f[f(x)]+1的所有零点所构成的集合为________. 解析 本题即求方程f[f(x)]=-1的所有根的集合,先解方程f(t)=-1,即或得t=-2或t=.再解方程f(x)=-2和f(x)=. 即或和或 得x=-3或x=和x=-或x=. 答案 9.已知函数f(x)=ex-2x+a有零点,则a的取值范围是________. 10.若直角坐标平面内两点P,Q满足条件:①P、Q都在函数f(x)的图象上;②P、Q关于原点对称,则称点对(P、Q)是函数f(x)的一个“友好点对”(点对(P、Q)与点对(Q,P)看作同一个“友好点对”).已知函数f(x)=则f(x)的“友好点对”的个数是________. 解析 设P(x,y)、Q(-x,-y)(x>0)为函数f(x)的“友好点对”,则y=,-y=2(-x)2+4(-x)+1=2x2-4x+1,∴+2x2-4x+1=0,在同一坐标系中作函数y1=、y2=-2x2+4x-1的图象,y1、y2的图象有两个交点,所以f(x)有2个“友好点对”,故填2. 答案 2 11.设函数f(x)=(x>0). (1)作出函数f(x)的图象; (2)当00). (1)若g(x)=m有零点,求m的取值范围; (2)确定m的取值范围,使得g(x)-f(x)=0有两个相异实根. 解(1)法一:∵g(x)=x+≥2=2e, 等号成立的条件是x=e, 故g(x)的值域是[2e,+∞), 因而只需m≥2e,则g(x)=m就有零点. 法二:作出g(x)=x+(x>0)的大致图象如图: 可知若使g(x)=m有零点, 则只需m≥2e. 法三:由g(x)=m得 x2-mx+e2=0. 此方程有大于零的根, 故等价于, 故m≥2e. (2)若g(x)-f(x)=0有两个相异的实根,即g(x)与f(x)的图象有两个不同的交点,作出g(x)=x+(x>0)的大致图象. ∵f(x)=-x2+2ex+m-1 =-(x-e)2+m-1+e2. 其图象的对称轴为x=e,开口向下,最大值为m-1+e2. 故当m-1+e2>2e, 即m>-e2+2e+1时, g(x)与f(x)有两个交点, 即g(x)-f(x)=0有两个相异实根. ∴m的取值范围是(-e2+2e+1,+∞) 查看更多